98%
921
2 minutes
20
The contradiction of near-infrared II (NIR-II) emission and photothermal effects limits the development of phototheranostic agents (PTAs) in many emerging cutting-edge applications. Organic aggregates present a promising opportunity for the balance of competitive relaxation processes through the manipulation of molecular structure and packing. Herein, side chain phenyl isomerization-induced spatial conjugation was proposed for constructing A-D-A type NIR-II PTAs with simultaneous enhancement of fluorescence brightness and photothermal properties. Three pairs of mutually isomeric fluorophores, whose phenyls respectively located at the outside (o-series) and inside (i-series) of the side chain, were designed and synthesized. The positional isomerization of the phenyl endows the o-series crystals with strong spatial conjugation between the phenyl group on the side chain and the backbone, as well as interlocked planar network, which is different to that observed in the i-series. Thus, all o-series nanoparticles (NPs) exhibit red-shifted absorption, enhanced NIR-II emission, and superior photothermal properties than their i-series counterparts. A prominent member of the o-series, o-ITNP NPs, demonstrated efficacy in facilitating NIR-II angiography, tumor localization, and NIR-II imaging-guided tumor photothermal therapy. The success of this side chain phenyl isomerization strategy paves the way for precise control of the aggregation behavior and for further development of efficient NIR-II PTAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202419785 | DOI Listing |
Biosci Biotechnol Biochem
September 2025
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.
Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China.
Achieving quantitative control over interlayer spacing in multilayer two-dimensional (2D) supramolecular organic frameworks (SOFs) remains a fundamental challenge. Here, we report a molecular pillar engineering strategy enabling programmable vertical expansion of bilayer architectures. By designing elongated bipyridine pillars L2/L3 (3.
View Article and Find Full Text PDFFood Res Int
November 2025
Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
The poor foaming of egg yolks has long plagued the food industry. In this study, four egg yolk spheres (EYS) were prepared via acid- and alkaline pH-shift methods, and the main factors affecting the variation in their foaming capacity were determined. The tertiary structure of EYS under hydrogen bonding and electrostatic interactions unfolded in acidic shifts, exposing many functional groups, and refolded in basic shifts and exposed hydrophobic side chains.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Protein Science, Division of Protein Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden. Electronic address:
This paper presents the generation and evaluation of a novel potential drug delivery platform for biologics, based on recombinant spider silk. Targeting CD40 for activation of antigen presenting cells, in order to overcome tumor induced T cell tolerance, have shown promising results in cell and animal models. However, further trials have gained limited results due to severe side reactions.
View Article and Find Full Text PDF