Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Achieving quantitative control over interlayer spacing in multilayer two-dimensional (2D) supramolecular organic frameworks (SOFs) remains a fundamental challenge. Here, we report a molecular pillar engineering strategy enabling programmable vertical expansion of bilayer architectures. By designing elongated bipyridine pillars L2/L3 (3.0/4.4 nm) with hydrophilic side chains, we transform a Zn-porphyrin/CB[8] monolayer SOF (ml-2D-SOF, 1.8 nm) into bilayers with precision-tuned thicknesses: bl-2D-SOF-2 (5.4 ± 0.2 nm) and bl-2D-SOF-3 (6.7 ± 0.3 nm). Synchrotron small-angle and wide-angle X-ray scattering (SAXS/WAXS), transmission electron microscopy (TEM) lattice imaging, and atomic force microscopy (AFM) confirm structural regularity with Ångstrom-level accuracy in layer spacing. Crucially, we establish a linear correlation between pillar length and interlayer distance, while multivalency-driven assembly ensures >93% bilayer selectivity. This work pioneers quantitative 3D engineering in 2D SOFs, opening avenues for tailored nanoconfined environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202516181 | DOI Listing |