98%
921
2 minutes
20
Unlabelled: Stripe rust is prevalent in the wheat-growing region of southwestern China. Frequent changes in stripe rust pathogen virulence in this region lead to a rapid loss of disease resistance among wheat varieties. However, Chinese wheat landrace Yizhanghongkemai (YZHK) has exhibited adult-plant stripe rust resistance for more than one decade in a disease nursery in southwestern China. To elucidate the underlying genetic basis, quantitative trait loci (QTLs) for adult-plant stripe rust resistance in YZHK were analyzed using an inclusive composite interval mapping method. Six QTLs for adult-plant stripe rust resistance were detected on chromosomes 1BL, 2BL, 3DS, 5BL, 5DL, and 7DS in multiple environments. Notably, , and were likely new disease resistance loci. By comparing the effects of QTL alleles on yield and its related components in field trials in which stripe rust was severe and effectively controlled, we determined that three QTLs significantly decreased yield losses due to stripe rust, among which the QTLs on chromosomes 1BL and 7DS were from YZHK, whereas the QTL on chromosome 5DL was from the other parent Chuanyu 12. These QTLs represent elite genetic resources for developing wheat varieties with adult-plant stripe rust resistance in the wheat-growing region of southwestern China.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-025-01583-z.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260146 | PMC |
http://dx.doi.org/10.1007/s11032-025-01583-z | DOI Listing |
Theor Appl Genet
September 2025
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
Stacking desirable haplotypes across the genome to develop superior genotypes has been implemented in several crop species. A major challenge in Optimal Haplotype Selection is identifying a set of parents that collectively contain all desirable haplotypes, a complex combinatorial problem with countless possibilities. In this study, we evaluated the performance of metaheuristic search algorithms (MSAs)-genetic algorithm (GA), differential evolution (DE), particle swarm optimisation (PSO), and simulated annealing (SA) for optimising parent selection under two genotype building (GB) objectives: Optimal Haplotype Selection (OHS) and Optimal Population Value (OPV).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Life Science Academy, Beijing, 102206, China.
In-field molecular diagnostics of plant pathogens are critical for crop disease management and precision agriculture, but tools are still lacking. Herein, we present a bioluminescent molecular diagnostic assay capable of detecting viable pathogens directly in minimally processed plant samples, enabling rapid and precise in-field crop disease diagnosis. The assay, called bioluminescent craspase diagnostics (BioCrastics), leverages newly discovered RNA-activated protease of CRISPR (Craspase) with enzymatic luminescence to generate a cascaded amplification, thus bypasses nucleic acid purification and amplification while achieving sub-nanogram sensitivity for fungal pathogens.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2025
State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China.
Stripe rust ( f. sp. ) poses a major threat to Chinese wheat production.
View Article and Find Full Text PDFTheor Appl Genet
August 2025
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
Breeding resistant cultivars is the most effective strategy to control stripe rust in cereal crops. The hexaploid triticale line Xinyi is highly resistant to stripe rust at the seedling and adult plant stages. A segregating F population derived from a cross between Xinyi and the susceptible hexaploid triticale cultivar Zhongsi1048 was assessed to understand the genetic architecture of stripe rust resistance.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Stripe rust, caused by f. sp. (Pst), represents a major global threat to wheat (.
View Article and Find Full Text PDF