Publications by authors named "Quanwei Yu"

In-field molecular diagnostics of plant pathogens are critical for crop disease management and precision agriculture, but tools are still lacking. Herein, we present a bioluminescent molecular diagnostic assay capable of detecting viable pathogens directly in minimally processed plant samples, enabling rapid and precise in-field crop disease diagnosis. The assay, called bioluminescent craspase diagnostics (BioCrastics), leverages newly discovered RNA-activated protease of CRISPR (Craspase) with enzymatic luminescence to generate a cascaded amplification, thus bypasses nucleic acid purification and amplification while achieving sub-nanogram sensitivity for fungal pathogens.

View Article and Find Full Text PDF

There is a pressing need to search for efficient therapeutic molecular candidates for the treatment of small cell lung cancer (SCLC). Here, we designed a series of 3-arylisoquinoline derivatives by introducing either flexible tertiary amino groups or rigid imidazole rings, aiming to enhance anti-SCCL efficay. Among them, compound 52 with a symmetrical dibutylamine side chain demonstrated a remarkable inhibitory potency on Topoismerase II (Topo II).

View Article and Find Full Text PDF

Upon the activation of inflammasomes, inflammatory caspases cleave and activate gasdermin D (GSDMD), leading to pore formation that causes cell membrane rupture and amplifies downstream inflammatory responses. Dysregulated inflammasome activation and pyroptosis signaling pathways are implicated in numerous inflammatory diseases. In our work, a set of novel thiazole amide compounds with inhibitory activity against NLRP3 inflammasome-induced pyroptosis was identified.

View Article and Find Full Text PDF

RNA modifications, such as N6-methylation of adenosine (mA), serve as key regulators of cellular behaviors, and are highly dynamic; however, tools for dynamic monitoring of RNA modifications in live cells are lacking. Here, we develop a genetically encoded live-cell RNA methylation sensor that can dynamically monitor RNA mA level at single-cell resolution. The sensor senses RNA mA in cells via affinity-induced cytoplasmic retention using a nuclear location sequence-fused mA reader.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing 3-arylisoquinolines as dual inhibitors of Topoisomerase I and II to combat treatment resistance in small cell lung cancer (SCLC).
  • A total of 46 new compounds were synthesized, with two showing strong cytotoxicity and effective dual inhibitory activity against Topo I and II.
  • These compounds demonstrate the ability to inhibit SCLC cell proliferation and migration while inducing apoptosis, with a tumor inhibition rate similar to etoposide but with reduced toxicity.
View Article and Find Full Text PDF

Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase.

View Article and Find Full Text PDF

Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years.

View Article and Find Full Text PDF

As a cytosolic enzyme involved in the purine salvage pathway metabolism, purine nucleoside phosphorylase (PNP) plays an important role in a variety of cellular functions but also in immune system, including cell growth, apoptosis and cancer development and progression. Based on its T-cell targeting profile, PNP is a potential target for the treatment of some malignant T-cell proliferative cancers including lymphoma and leukemia, and some specific immunological diseases. Numerous small-molecule PNP inhibitors have been developed so far.

View Article and Find Full Text PDF

Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment.

View Article and Find Full Text PDF

Receptor-interacting protein kinase 2 (RIPK2) belongs to the receptor-interacting protein family (RIPs), which is mainly distributed in the cytoplasm. RIPK2 is widely expressed in human tissues, and its mRNA level is highly expressed in the spleen, leukocytes, placenta, testis, and heart. RIPK2 is a dual-specificity kinase with multiple domains, which can interact with tumor necrosis factor receptor (TNFR), and participate in the Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) signaling pathways.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (CDK5) protein plays an important role not only in the central nervous system but also in the periphery, including immune response, regulation of insulin secretion, and cancer development and progression. Consequently, targeting the CDK5 protein is a potential strategy for the treatment of many diseases, especially cancer and neurodegenerative diseases. To date, numerous pan-CDK inhibitors have entered clinical trials.

View Article and Find Full Text PDF

The development of materials with highly selective recognition towards Hg is of great significance in environmental monitoring. Herein, a novel thermo-responsive copolymer with Hg recognition property is prepared via thermally-initiated copolymerization of 5'-O-Acryloyl 5-methyl-uridine (APU) and N-isopropylacrylamide (NIPAM). The chemical structure and stimuli-sensitive properties of poly(N-isopropylacrylamide-co-5-methyl-uridine) (P(NIPAM-co-APU)) linear polymers and hydrogel are thoroughly investigated.

View Article and Find Full Text PDF

The molecular mechanisms underlying how SUD2 recruits other proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to exert its G-quadruplex (G4)-dependent pathogenic function is unknown. Herein, Nsp5 was singled out as a binding partner of the SUD2-N+M domains (SUD2) with high affinity, through the surface located crossing these two domains. Biochemical and fluorescent assays demonstrated that this complex also formed in the nucleus of living host cells.

View Article and Find Full Text PDF

Herein, a series of quinazoline and heterocyclic fused pyrimidine analogues were designed and synthesized based on the X-ray co-crystal structure of lead compound , showing efficacious antitumor activities. Two analogues, and , exhibited favorable antiproliferative activities, which were more potent than lead compound by 10-fold in MCF-7 cells. In addition, and exhibited potent antitumor efficacy and tubulin polymerization inhibition .

View Article and Find Full Text PDF

Therapeutic responses of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) - tyrosine kinase inhibitors (TKIs) are known to be associated with EGFR mutations. However, a proportion of NSCLCs carrying EGFR mutations still progress on EGFR-TKI underlining the imperfect correlation. Structure-function-based approaches have recently been reported to perform better in retrospectively predicting patient outcomes following EGFR-TKI treatment than exon-based method.

View Article and Find Full Text PDF

Pyroptosis is a newly identified form of cell death that is closely correlated with many diseases. Recent studies have indicated that the inflammation in pyroptosis would accelerate the generation of reactive oxygen species (ROS). In addition, intracellular viscosity is another key microenvironmental parameter that reflects many physiological and pathological states in the early stage, hypochlorous acid (HOCl), as an important ROS, also plays significant roles in a variety of pathologies.

View Article and Find Full Text PDF

Novel tolfenamic acid derivatives based on the structure of I-1 were designed and synthesized to improve its poor target inhibition and solubility. Among them, W10 was identified as a potent dual-target inhibitor of Topo I (IC = 0.90 ± 0.

View Article and Find Full Text PDF

Activation of hypoxia-inducible factor 2 (HIF-2) has emerged as a potent renal anemia treatment strategy. Here, the benzisothiazole derivative was discovered as a novel HIF-2α agonist, which first demonstrated nanomolar activity (EC = 490 nM, = 349.2%) in the luciferase reporter gene assay.

View Article and Find Full Text PDF

EGFR mutations are an ongoing challenge in the treatment of NSCLC, and demand continuous updating of EGFR TKI drug candidates. Pyrrolopyrimidines are one group of versatile scaffolds suitable for tailored drug development. However not many precedents of this type of pharmacophore have been investigated in the realm of third generation of covalent EGFR-TKIs.

View Article and Find Full Text PDF

Cation-π interaction is a type of noncovalent interaction formed between the π-electron system and the positively charged ion or moieties. In this study, we designed a series of novel NQO1 substrates by introducing aliphatic nitrogen-containing side chains to fit with the L-shaped pocket of NQO1 by the formation of cation-π interactions. Molecular dynamics (MD) simulation indicated that the basic N atom in the side chain of NQO1 substrates, which is prone to be protonated under physiological conditions, can form cation-π interactions with the Phe232 and Phe236 residues of the NQO1 enzyme.

View Article and Find Full Text PDF

Hypoxia-inducible factor-2 (HIF-2), a heterodimeric transcriptional protein consisting of HIF-2α and aryl hydrocarbon receptor nuclear translocator (ARNT) subunits, has a broad transcriptional profile that plays a vital role in human oxygen metabolism. M1001, a HIF-2 agonist identified by high-throughput screening (HTS), is capable of altering the conformation of Tyr281 of the HIF-2α PAS-B domain and enhancing the affinity of HIF-2α and ARNT for transcriptional activation. M1002, an analog of M1001, shows improved efficacy than M1001.

View Article and Find Full Text PDF

Inhibition of the dioxygen sensing hypoxia-inducible factor prolyl hydroxylases has potential therapeutic benefit for treatment of diseases, including anaemia. We describe the discovery of a small-molecule probe useful for monitoring binding to human prolyl hydroxylase domain 2 (PHD2) via fluorescence polarisation. The assay is suitable for high-throughput screening of PHD inhibitors with both weak and strong affinities, as shown by work with clinically used inhibitors and naturally occurring PHD inhibitors.

View Article and Find Full Text PDF

Hypoxia-inducible factor (HIF) is identified to be a promising target to mediate the response to hypoxia. Its stability and activation are negatively controlled by prolyl hydroxylase 2 (PHD2). Thus, PHD2 inhibition has been perceived as a promising anti-anemia therapy.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC and bears a significantly high frequency of hypoxia-inducible factor 2α (HIF-2α) because of von Hippel-Lindau (VHL) tumor suppressor gene mutations. From the first discovery of HIF-2α inhibitors to the promising potency of the HIF-2α inhibitor PT2977 in a clinical Phase II trial for the treatment of advanced RCC, inhibition of HIF-2α has proved to be a novel and effective therapy for RCC. In this review, we briefly discuss the role of HIF-2α in ccRCC and provide insight into recent advances in the discovery, development, and mode of action of HIF-2α allosteric inhibitors.

View Article and Find Full Text PDF