98%
921
2 minutes
20
Perovskite solar cells have emerged as a potential competitor to the silicon photovoltaic technology. The most representative perovskite cells employ SnO and spiro-OMeTAD as the charge-transport materials. Despite their high efficiencies, perovskite cells with such a configuration show unsatisfactory lifespan, normally attributed to the instability of perovskites and spiro-OMeTAD. Limited attention was paid to the influence of SnO, an inorganic material, on device stability. Here we show that improving SnO with a redox interfacial modifier, cobalt hexammine sulfamate, simultaneously enhances the power-conversion efficiency (PCE) and stability of the perovskite solar cells. Redox reactions between the bivalent cobalt complexes and oxygen lead to the formation of a graded distribution of trivalent and bivalent cobalt complexes across the surface and bulk regions of the SnO. The trivalent cobalt complex at the top surface of SnO raises the concentration of (SONH) which passivates uncoordinated Pb and relieves tensile stress, facilitating the formation of perovskite with improved crystallinity. Our approach enables perovskite cells with PCEs of up to 24.91 %. The devices retained 93.8 % of their initial PCEs after 1000 hours of continuous operation under maximum power point tracking. These findings showcase the potential of cobalt complexes as redox interfacial modifiers for high-performance perovskite photovoltaics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202411604 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Department of Material Science & Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong P.R. China.
Organic solar cells (OSCs) with p-i-n architecture usually exhibit decent efficiency due to the easily tunable energy levels of organic interfacial layers (ILs). However, their operational lifetime is limited by the morphological instability of organic ILs especially the electron-transporting layer (ETL) that shows strong self-aggregation tendency. Besides, organic ETLs are confronted with significant challenges including large batch-to-batch variations and high costs.
View Article and Find Full Text PDFMikrochim Acta
September 2025
School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
A CuFeO/NiCo-LDH heterojunction electrochemical sensor (LDH: layered double hydroxide) was developed for the sensitive detection of tetracycline (TC). The sensor was constructed by integrating ZIF-67-derived nanocage NiCo-LDH on nickel foam with CuFeO, forming a p-n heterojunction that enhanced electron transfer and TC adsorption. The sensor exhibited bilinear detection ranges (0.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Solar-driven hydrogen peroxide (HO) production offers a green and sustainable alternative to the energy-intensive anthraquinone process, utilizing water and oxygen as feedstock and solar energy as the sole input. Covalent organic frameworks (COFs), owing to their well-defined crystalline structures and tunable electronic properties, have emerged as a compelling platform for photocatalytic HO synthesis. However, the efficiency of HO photosynthesis remains limited by sluggish charge separation and rapid carrier recombination.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
The electrocatalytic carbon dioxide (CO) reduction is challenged by the parasitic hydrogen evolution reaction (HER) especially in acidic media. Here, we elaborate that redox-active isoindigo, acting as a multifunctional co-catalyst, can pre-activate CO-bound intermediates and suppress HER upon the synergistic effects of Lewis acid-base adduct formation, intramolecular hydrogen-bond interaction, and interfacial water structure modulation. Modifying a silver catalyst with isoindigo substantially decreases the energy barrier for CO-to-*COOH conversion, which is regarded as the potential-limiting step of carbon monoxide production.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Power Battery and Materials, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
High-nickel layered oxide LiNiCoMnO (NCM, ≥ 0.8) materials are considered optimal cathodes for lithium-ion power batteries owing to their high energy density, commendable cycling performance, and cost-effectiveness. However, structural collapse and interface instability during cycling result in diminished cycling stability, significantly hindering their commercial viability.
View Article and Find Full Text PDF