Regulating charge dynamics in covalent organic frameworks for efficient solar-driven hydrogen peroxide production.

Chem Commun (Camb)

Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Solar-driven hydrogen peroxide (HO) production offers a green and sustainable alternative to the energy-intensive anthraquinone process, utilizing water and oxygen as feedstock and solar energy as the sole input. Covalent organic frameworks (COFs), owing to their well-defined crystalline structures and tunable electronic properties, have emerged as a compelling platform for photocatalytic HO synthesis. However, the efficiency of HO photosynthesis remains limited by sluggish charge separation and rapid carrier recombination. Regulating charge dynamics, encompassing photogenerated exciton dissociation, carrier transport, and interfacial redox kinetics, is therefore central to unlocking the full potential of COF-based photocatalysts. In this Feature Article, we review recent progress in regulating charge dynamics within COFs for efficient solar-driven HO production. We discuss key material design strategies including donor-acceptor engineering, functional group modification, molecular doping, topological control, regioisomeric design, and heterostructure construction. By correlating structural features with exciton binding energy, charge mobility, and photocatalytic performances, we highlight how molecular-level design translates into photocatalytic performance. Finally, we outline current challenges and propose future research directions to accelerate the development of high-efficiency COF-based materials for solar fuel generation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc04430hDOI Listing

Publication Analysis

Top Keywords

regulating charge
12
charge dynamics
12
covalent organic
8
organic frameworks
8
efficient solar-driven
8
solar-driven hydrogen
8
hydrogen peroxide
8
peroxide production
8
dynamics covalent
4
frameworks efficient
4

Similar Publications

Rational optimization of the pore size and topology of porous nanocarriers is crucial for improving the loading amount of luminophore and enhancing electrochemiluminescence (ECL) performance. In this study, an equimolar linear ligand replacement strategy was employed to synthesize novel mesoporous metal-organic frameworks (MOFs) for encapsulating Ru(bpy) (Ru@Zr MOFs) under room temperature without an acid modulator. Ingenious ligand substitution allows precise control of pore size, enabling encapsulation at the single-molecule level within mesoporous cages.

View Article and Find Full Text PDF

Unveiling the physical chemistry of silica binding peptide adsorption.

J Colloid Interface Sci

September 2025

Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina. Electronic address:

Silica-binding peptides (SBPs) are versatile tools for functionalizing silica surfaces in biotechnology, yet the mechanisms underlying their adsorption remain poorly understood. Here, we develop a predictive molecular theory that integrates peptide structure, electrostatic and short-range interactions, and charge regulation effects to model SBP adsorption onto silica. This coarse-grained approach effectively captures the dependence of adsorption on pH, salt concentration, and peptide concentration.

View Article and Find Full Text PDF

A Facile and Efficient Route to Achieve Polythiophene-Based Nanoparticles With Various Morphologies.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P.R. China.

Polythiophene-based nanoparticles (PTNPs), a prominent class of conjugated polymer nanoparticles (CPNs) with remarkable optical and electronic properties, have gained significant attention in applications such as electronics and bioimaging. However, current methods in generating PTNPs have run into obstacles including low variety of morphologies, poor reproducibility, and low preparation efficiency, restricting their further application. In this study, we report a facile and efficient fabrication strategy based on template synthesis method.

View Article and Find Full Text PDF

Dry silica dust-based products for management of ixodids.

Vet Parasitol

August 2025

USDA-ARS, Knipling-Bushland U S. Livestock Insects Research Laboratory, Kerrville, TX 78028, United States. Electronic address:

Ixodids transmit a variety of disease-causing agents that afflict humans, livestock, companion animals, and wildlife, as well as reducing meat and milk yields, reproduction, hide quality, and occasionally inducing death from exsanguination. While the primary control tactic has been application of conventional synthetic acaricides, resistance to many of those products has occurred among various ixodid species. This development has instigated searches for alternative control tactics, such as growth regulators, bioactive animal and botanical substances, vaccines, biological control, and silica-based dusts.

View Article and Find Full Text PDF

Facile engineering bifunctional rhodium‑nickel metallene catalyst for urea-assisted hydrogen production.

J Colloid Interface Sci

August 2025

School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

Integration of the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) is a prospective strategy for energy-efficient hydrogen generation. However, developing highly effective dual functional catalysts for both HER and UOR is still challenging. Herein, two-dimensional rhodium‑nickel (RhNi) metallene with a wrinkled nanosheet structure is prepared by a feasible two-step hydrothermal approach, which provides numerous catalytically active centers and accelerates the charge transfer during the reaction.

View Article and Find Full Text PDF