98%
921
2 minutes
20
The electrocatalytic carbon dioxide (CO) reduction is challenged by the parasitic hydrogen evolution reaction (HER) especially in acidic media. Here, we elaborate that redox-active isoindigo, acting as a multifunctional co-catalyst, can pre-activate CO-bound intermediates and suppress HER upon the synergistic effects of Lewis acid-base adduct formation, intramolecular hydrogen-bond interaction, and interfacial water structure modulation. Modifying a silver catalyst with isoindigo substantially decreases the energy barrier for CO-to-*COOH conversion, which is regarded as the potential-limiting step of carbon monoxide production. Accordingly, superior catalytic performances are obtained at pH 2, where Faradaic efficiencies surpass 99% at industrial-relevant current densities. Moreover, we find that assembling an additional polyamine-coated layer in front of gas flow channels improves CO transport to the catalyst layer, optimizing the trade-off of conversion and selectivity at low flow rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202514111 | DOI Listing |
J Colloid Interface Sci
September 2025
School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
The emergence of special scenarios involving small-sized penetrating wounds has imposed stricter performance requirements on shape-recovery hemostatic materials, particularly regarding their shape fixity and water-triggered shape recovery efficiency. Herein, an efficient shape-recovery sponge dressing with high shape fixity and high-speed liquid absorption, designated as CQT, was developed by integrating a sieve structure with the rough surface coating. The sieve structure, characterized by microporous structures on macroporous walls, enhanced the multi-level and connectivity of the overall pore network, which could improve compressive fixity via enhancing the energy dissipation required for rebound and enabled efficient shape recovery through augmented capillary action during fluid absorption.
View Article and Find Full Text PDFAgeing Res Rev
September 2025
Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Laboratory of Naturel Medicine for drug discovery, School of Pharmacy, China Medical University, Shenyang, 110122, China. Electronic address:
Calcium (Ca)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is an emerging drug target for age-related diseases. It is a multifunctional kinase with complex activation modes, numerous isoforms, broad tissue distribution, and a dual role in health and disease. In particular, its isoforms share a high degree of conservation within the catalytic and regulatory domains, with only minor differences confined to the linker region.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Sub Campus, Dharashiv, India.
The present study aims to develop novel antimalarial and antimicrobial agents by synthesizing a series of 25 triazolyl quinoline carboxylate derivatives via azide-alkyne 1,3-dipolar cycloaddition, starting from isatin and p-fluoroacetophenone. Structural characterization was performed using IR, H NMR, C NMR, and mass spectrometry. The synthesized hybrids were evaluated for their in vitro antimalarial activity against the chloroquine-sensitive Plasmodium falciparum 3D7 strain.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
This study reports the synthesis, characterization, and multifunctional sensing capabilities of a novel quinoline-based Schiff base ligand (L), designed for selective and sensitive detection of Ni, Cu, Zn ions, and CO⁻ anions. L exhibits distinct colorimetric responses visible to the naked eye-pale yellow to amber red for Ni, caramel brown for Cu, and canary yellow for Zn-enabling efficient and straightforward detection. Fluorescence studies reveal a selective green fluorescence "turn-on" response for Zn, complemented by fluorescence quenching in the presence of CO⁻, demonstrating the ligand's reusability and robustness.
View Article and Find Full Text PDFUnlabelled: Sperm capacitation involves proteolytic remodeling of membrane proteins, including components of the CatSper calcium channel, which is essential for hyperactivation and male fertility. Here, we identify the seminal protease inhibitor SPINK3, a known decapacitation factor that suppresses premature capacitation in the female tract, as the first physiological inhibitor of CATSPER1 processing. In mouse sperm, SPINK3 blocks capacitation-induced CATSPER1 cleavage, preserving a subpopulation with intact CatSper channels and lacking pTyr development in the flagellum.
View Article and Find Full Text PDF