Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Energy stress, characterized by the reduction of intracellular ATP, has been implicated in various diseases, including cancer. Here, we show that energy stress promotes the formation of P-bodies in a ubiquitin-dependent manner. Upon ATP depletion, the E3 ubiquitin ligase TRIM23 catalyzes lysine-63 (K63)-linked polyubiquitination of HCLS1-associated protein X-1 (HAX1). HAX1 ubiquitination triggers its liquid‒liquid phase separation (LLPS) and contributes to P-bodies assembly induced by energy stress. Ubiquitinated HAX1 also interacts with the essential P-body proteins, DDX6 and LSM14A, promoting their condensation. Moreover, we find that this TRIM23/HAX1 pathway is critical for the inhibition of global protein synthesis under energy stress conditions. Furthermore, high HAX1 ubiquitination, and increased cytoplasmic localization of TRIM23 along with elevated HAX1 levels, promotes colorectal cancer (CRC)-cell proliferation and correlates with poor prognosis in CRC patients. Our data not only elucidate a ubiquitination-dependent LLPS mechanism in RNP granules induced by energy stress but also propose a promising target for CRC therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217408PMC
http://dx.doi.org/10.1038/s44318-024-00120-6DOI Listing

Publication Analysis

Top Keywords

energy stress
24
stress promotes
8
hax1 ubiquitination
8
induced energy
8
energy
6
hax1
6
stress
5
promotes p-bodies
4
p-bodies formation
4
formation lysine-63-linked
4

Similar Publications

Stable apelin-13 analogues promote cell proliferation, differentiation and protect inflammation induced cell death.

Mol Cell Neurosci

September 2025

Biomedical and Forensic Science, School of Human Sciences, University of Derby, Derby, DE22 1GB, United Kingdom; Life and Health Sciences, University of Roehampton, London, SW15 5PH, United Kingdom. Electronic address:

Emerging evidence indicates that apelin, an adipokine, plays a critical role in numerous biological functions and may hold potential for therapeutic applications; however, its efficacy is constrained by rapid plasma degradation. Thus, the search for novel apelin analogues with reduced susceptibility to plasma degradation is ongoing. We have previously shown novel modified apelin-13 analogues, providing exciting opportunities for potential therapeutic development against Alzheimer's disease.

View Article and Find Full Text PDF

Protective Role of Bre1 in Mitochondrial Function and Energy Metabolism in Drosophila Models of Parkinson's disease.

Free Radic Biol Med

September 2025

Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, The First Affiliated Hospital of Guangxi Medical University,Nanning, Guangxi 530021, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education,

Background: The second most common cause of autosomal recessive early-onset Parkinson's disease (PD) can be attributed to mutations in the PINK1 gene, malfunction of the mitochondria is the key pathological mechanism. Bre1 encodes an E3 ubiquitin ligase, with the discovery of Bre1's role in repairing mitochondrial damage, further investigation into its implications for PD is warranted.

Methods: We used the PINK1B9 drosophila melanogaster as the PD model.

View Article and Find Full Text PDF

Combined effects of nanoplastics and 3-BHA at environmentally relevant concentrations significantly aggravated kidney injury via TGF-β/SMAD signaling pathway in mice.

Ecotoxicol Environ Saf

September 2025

College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River, Fuyang Normal University, Fuyang, Anhui 236041, China. Electronic address: yong_liu2023

The increasing presence of nanoplastics (NPs) and synthetic antioxidants like 3-tert -Butyl-4-hydroxyanisole (3-BHA) in the environment has attracted widespread attention about their combined toxicological effects on human health, particularly on renal function. This study explored to the combined impacts of NPs and 3-BHA at environmentally relevant concentrations on sub-chronic kidney injury in mice. Firstly, our results confirmed that the accumulation of 80 nm NPs in renal tissues, leading to structural abnormalities such as reduced mitochondrial cristae and increased empty bubbles in mice by transmission electron microscope (TEM) analysis.

View Article and Find Full Text PDF

Nanoplastics (NPs) in marine ecosystems have garnered increasing attention for their interference with the physiological processes of aquatic organisms. An in-depth examination of the toxicological responses of Nannochloropsis oceanica, a species vital to marine ecosystems, is essential due to the crucial role of lipid metabolism in carbon sequestration and energy allocation in microalgae. This study analyzed the toxicological responses of N.

View Article and Find Full Text PDF

Hypoxia and elevated seawater temperatures are increasingly prevalent stressors in marine ecosystems, significantly impacting the physiology of marine organisms. This study investigates the transcriptomic and proteomic responses of Pacific oyster (Crassostrea gigas) hemocytes to hypoxia alone (water temperature, 23 °C; dissolved oxygen [DO] level, 1 mg O₂/L) and combined hypoxia with high temperature (water temperature, 28 °C; DO level, 1 mg O₂/L) over a 10-day exposure period. Using RNA sequencing and liquid chromatography-mass spectrometry, we identified distinct molecular responses to these stressors.

View Article and Find Full Text PDF