Publications by authors named "Yaxuan Jiang"

The increasing presence of nanoplastics (NPs) and synthetic antioxidants like 3-tert -Butyl-4-hydroxyanisole (3-BHA) in the environment has attracted widespread attention about their combined toxicological effects on human health, particularly on renal function. This study explored to the combined impacts of NPs and 3-BHA at environmentally relevant concentrations on sub-chronic kidney injury in mice. Firstly, our results confirmed that the accumulation of 80 nm NPs in renal tissues, leading to structural abnormalities such as reduced mitochondrial cristae and increased empty bubbles in mice by transmission electron microscope (TEM) analysis.

View Article and Find Full Text PDF

In early spring, bleeding is a common occurrence in A. arguta when local temperatures reach 8 °C-10 °C. In this study, changes in the composition of bleeding sap and effect of bleeding on A.

View Article and Find Full Text PDF

Objective: Hepatic ischemia-reperfusion injury (HIRI) frequently occurs as a complication in liver surgeries, which significantly impacting patient outcomes. Sinensetin (SEN) is a plant-derived polymethoxylated flavone with anti-inflammatory and anti-oxidative activities. However, the hepatoprotective effect of sinensetin in HIRI pathogenesis have not been fully explored.

View Article and Find Full Text PDF

Drought significantly restricts the growth and quality of fruit trees Prunus mira, an ancient wild peach species, exhibits strong drought tolerance; however, the detailed response mechanism remains unknown. The nucleic acid excision repair factor radiation sensitivity 23d (Rad23d) plays a crucial role in plant stress, growth, and development. However, its specific mechanism of action in P.

View Article and Find Full Text PDF

Background: Trehalose is a nonreducing disaccharide containing two glucose molecules linked through an α,α-1,1-glycosidic bond. This unique chemical structure causes trehalose levels to fluctuate significantly in plants under stress, where it functions as an osmoprotectant, enhancing plant resistance to stress. Previous studies have confirmed that the trehalose synthesis pathway is widely conserved across most plants.

View Article and Find Full Text PDF

Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops.

View Article and Find Full Text PDF

Introduction: () is a prominent pathogen responsible for both hospital-acquired and community-acquired infections. Among its arsenal of virulence factors, Panton-Valentine Leucocidin (PVL) is closely associated with severe diseases such as profound skin infections and necrotizing pneumonia. Patients infected with -positive often exhibit more severe symptoms and carry a substantially higher mortality risk.

View Article and Find Full Text PDF

The present study used CeO-CoO quantum dots@porous carbon/multiwalled carbon nanotube (CeO-CoO QDs@PC/MWCNT/GE) composites to modify graphite electrodes to fabricate high-sensitivity electrochemical sensors to detect the presence of oxytetracycline (OTC). The quantum dots were made from waste sugarcane bagasse. The electrochemical analysis demonstrated the superior electrochemical performance of CeO-CoO QDs@PC/MWCNT/GE, with a peak current density of 1.

View Article and Find Full Text PDF

Bleeding is as particularly a serious phenomenon in Actinidia arguta and has important effects on this plant's growth and development. Here we used A. arguta to study the effects of bleeding on the growth and development of leaves and fruits after a bleeding episode.

View Article and Find Full Text PDF

The rapid and ongoing spread of the coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emphasizes the urgent need for an easy and sensitive virus detection method. Here, we describe an immunocapture magnetic bead-enhanced electrochemical biosensor for ultrasensitive SARS-CoV-2 detection based on clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, collectively known as CRISPR-Cas13a technology. At the core of the detection process, low-cast and immobilization-free commercial screen-printed carbon electrodes are used to measure the electrochemical signal, while streptavidin-coated immunocapture magnetic beads are used to reduce the background noise signal and enhance detection ability by separating the excessive report RNA, and a combination of isothermal amplification methods in the CRISPR-Cas13a system is used for nucleic acid detection.

View Article and Find Full Text PDF