Publications by authors named "Xile Deng"

Nanopesticides have gained increasing attention for their enhanced control efficacy. However, their potential toxicity to environmental and public health remains largely unexplored, and their toxicological mechanism at molecular level is poorly understood. To this context, a hydrophilic and lipophilic diblock polymer (HLDP) was designed and synthesized to develop a novel nanoherbicide metamifop (MP)@HLDP with high herbicidal activity against barnyard grasses (Echinochloa crusgalli).

View Article and Find Full Text PDF

Kiwifruit, a nutritious fruit consumed globally, is affected by kiwifruit bacterial canker (KBC) caused by Pseudomonas syringae pv. actinidiae (Psa), which is a major biotic stress that adversely impacts its cultivation and production. KBC control is still challenging owing to the evolution of resistant populations of Psa, the environmental risks associated with copper bactericides, and lack of effective bactericides.

View Article and Find Full Text PDF

We present a smart roof that makes fragmented droplets from the impact of raindrops on superhydrophobic meshes and utilizes the droplets for agricultural spraying. This facile method transforms raindrops or waterdrops into uniform microdroplets, which can both reduce crop lodging induced by heavy rainfall, and realize uniform spraying of pesticides.

View Article and Find Full Text PDF

With the increasing reports of antibiotic resistance in this species, Pseudomonas aeruginosa is a common human pathogen with important implications for public health. Bacterial quorum sensing (QS) systems are potentially broad and versatile targets for developing new antimicrobial compounds. While previous reports have demonstrated that certain amide compounds can inhibit bacterial growth, there are few reports on the specific inhibitory effects of these compounds on bacterial quorum sensing systems.

View Article and Find Full Text PDF

Designing materials with low exciton binding energy is an efficient way of improving the hydrogen production performance of COFs(Covalent Organic Frameworks. Here, it is demonstrated that the strategy of decorating bromine atoms on Pyene-based COFs can achieve elevated photocatalytic H evolution rates (HER = 13.61 mmol gh).

View Article and Find Full Text PDF

The unreasonable use of chemical pesticides has caused serious damage to crops and the ecological environment. The botanical pesticide matrine has attracted attention as an environmentally friendly pesticide. Compared with traditional spraying methods, unmanned aerial vehicle (UAV) spraying has the advantages of safety, rapidity, uniform droplets, low dosages, and no terrain or crop restrictions.

View Article and Find Full Text PDF

Background: Weeds grow aggressively in agricultural fields, leading to reduced crop yields and an inability to meet the growing demand for food. Herbicides are currently the most effective method for weed control. However, the overuse of herbicides has resulted in the evolution of resistance mutants and has caused environmental pollution.

View Article and Find Full Text PDF

The polylactic acid-glycolic acid copolymer (PLGA) has been proven to be applicable in medicine, but there is limited research on its application and safety in the agricultural field. In this paper, thifluzamide PLGA microspheres were prepared via phacoemulsification and solvent volatilization, using the PLGA copolymer as the carrier and thifluzamide as the active component. It was found that the microspheres had good slow-release performance and fungicidal activity against .

View Article and Find Full Text PDF

Nanopesticides are considered to be a novel and efficient kind of tool for controlling pests in modern agriculture. Covalent organic frameworks (COFs), with high surface areas, ordered structures, and rich functional groups for loading pesticides, are a class of promising carrier materials that can be used to develop efficient nanopesticide delivery systems. However, until now, only a strong ionic interaction between the pesticide and COF can be utilized to achieve the combination between the pesticide and COF.

View Article and Find Full Text PDF

Herbicide injury is a common problem during the application of herbicides in practice. However, applying herbicide safeners can avoid herbicide damage. Safeners selectively protect crops against herbicide injury without affecting the biological activity of herbicides against the target weeds.

View Article and Find Full Text PDF

Background: The diamondback moth (Plutella xylostella) is one of the most destructive lepidopteran pests on cruciferous vegetables. However, resistance has emerged to current chemical and biological insecticides used for P. xylostella control, indicating the necessity of screening new targets on P.

View Article and Find Full Text PDF

One strategy for solving the phytotoxicity of herbicides is to apply herbicide safeners that can efficiently alleviate the injuries of agricultural crops caused by herbicides. When metolachlor, a chloroacetamide herbicide, is applied with paddy rice, for example, the mechanisms associated with metolachlor and its residue negatively impact on the growth and yields of rice. To identify novel high-activity herbicide safener candidates for metolachlor, a series of (E)-4-(2-substituted hydrazinyl)-6-chloro-2-phenyl pyrimidines were synthesized and their structures were confirmed using IR (infrared radiation), H NMR, C NMR, and HRMS (high resolution mass spectrometry).

View Article and Find Full Text PDF

Recent studies indicated that 'inert ingredients' exert negative effects on the environment. Herbicide safeners are classed as 'inert ingredients', which increase the selectivity and detoxification of herbicides. However, little attention has been focused on the environmental behavior of herbicide safeners.

View Article and Find Full Text PDF

Benoxacor, a chiral herbicide safener for S-metolachlor, has been detected in streams. However, the potential risk this poses to aquatic ecosystems is not clear. This study used zebrafish (Danio rerio) embryos as a model to assess the enantioselective toxicity of benoxacor and its effects on biological activity and development from 2 h to 96 h post-fertilization (hpf).

View Article and Find Full Text PDF

The use of herbicide safeners can significantly alleviate herbicide injury to protect crop plants and expand the application scope of the existing herbicides in the field. Sanshools, which are well known as spices, are -alkyl substituted compounds extracted from the species and have several essential physiological and pharmacological functions. Sanshools display excellent safener activity for the herbicide metolachlor in rice seedlings.

View Article and Find Full Text PDF

Fenclorim is a commercial herbicide safener with fungicidal activity used for chloroacetanilide herbicides, which might be suitable as a lead compound for screening novel fungicides. However, little has been reported so far on the structure-activity relationship of fungicidal activities of fenclorim or its analogues. Here, a series of 4-chloro-6-substituted phenoxy-2-phenylpyrimidine derivatives was synthesized by a substructure splicing route using fenclorim as a lead compound.

View Article and Find Full Text PDF

In the present study, the direct enantiomeric separation of hexythiazox enantiomers on Lux cellulose-1, Lux cellulose-2, Lux cellulose-3, Lux cellulose-4, Lux amylose-1 and Chirapak IC chiral columns were carefully investigated by reverse-phase high-performance liquid chromatography (RP-HPLC). Acetonitrile/water and methanol/water were used as mobile phase at a flow rate of 0.8 mL·min.

View Article and Find Full Text PDF

Insect growth regulators (IGRs) can cause abnormal growth and development in insects, resulting in incomplete metamorphosis or even death of the larvae. Ecdysone receptor (EcR) and chitinase in insects play indispensable roles in the molting process. Ecdysone analogues and chitinase inhibitors are considered as potential IGRs.

View Article and Find Full Text PDF

The ABCC2 protein of Plutella xylostella is an important target of Cry1A toxins from Bacillus thuringiensis (Bt), but whether this protein is involved in the resistance of P. xylostella to other insecticides remains unclear. In this study, the abcc2 gene of P.

View Article and Find Full Text PDF

Tyramine receptors (TARs) can be activated by tyramine (TA) or octopamine (OA) and have been shown to be related to physiological regulation (e.g., gustatory responsiveness, social organization, and learning behavior) in a range of insect species.

View Article and Find Full Text PDF

Oxadiargyl, which binds to the protoporphyrinogen oxidase IX to exhibit herbicide activity, is mainly used in the prevention of certain perennial broadleaved and grass weeds during the preemergence of rice in paddy fields. However, oxadiargyl affects the germination and seedling growth of rice, causing damage to the plant and reducing rice yield. Hence, monitoring fate and behaviour of oxadiargyl in rice paddy fields is of great significance.

View Article and Find Full Text PDF

The β-adrenergic-like octopamine receptor (OA2B2) belongs to the class of G-protein coupled receptors. It regulates important physiological functions in insects, thus is potentially a good target for insecticides. In this study, the putative open reading frame sequence of the Pxoa2b2 gene in Plutella xylostella was cloned.

View Article and Find Full Text PDF

Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behavior. They have been identified as candidate targets for next-generation insecticides, yet these targets have been relatively poorly exploited for insect control. In this study, we present a pipeline of novel allatotropin (Manse-AT) antagonist discovery with homology modeling, docking, molecular dynamics simulation and structure-activity relationship.

View Article and Find Full Text PDF

Background: The midgut is an important site for both nutrient absorption and ionic regulation in lepidopteran larvae, major pests in agriculture. The larval lepidopteran midgut has become a potent insecticide target over the past few decades. Recent studies have shown that an insect neuropeptide, Manduca sexta allatotropin (Manse-AT), exhibits inhibition of active ion transport (AIT) across the larval midgut epithelium.

View Article and Find Full Text PDF

An allatostatin (AST) neuropeptide mimic (H17) is a potential insect growth regulator, which inhibits the production of juvenile hormone (JH) by the corpora allata. To determine the effect of conformation of novel AST analogues and their ability to inhibit JH biosynthesis, eight insect AST analogues were synthesized using H17 as the lead compound by N-methylation scanning, which is a common strategy for improving the biological properties of peptides. A bioassay using JH production by corpora allata of the cockroach Diploptera punctata indicated that single N-methylation mimics (analogues 1-4) showed more activity than double N-methylation mimics (analogues 5-8).

View Article and Find Full Text PDF