Publications by authors named "Xiangzheng Zhang"

Spermiogenesis is the committed step of sperm production, during which spermatid cells undergo dramatic morphological transformations and transcriptional silencing. Post-translational modifications (PTMs), including phosphorylation, provide a level of protein function flexibility and play important roles in spermiogenesis. Dynamic protein phosphorylation profiles of spermatids are characterized across four different developing steps, and identified phosphorylation regulation of key proteins in spermiogenesis.

View Article and Find Full Text PDF

Protein phosphorylation is an important post-translational modification that plays a critical regulatory role in meiosis. HASPIN, a kinase highly conserved from yeast to mammals, is required for male fertility. In this study, we found that the intrinsically disordered N-terminal domain of HASPIN is also required for this function.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) carry complex glycoproteins critical mediators of disease progression and hold great potential for liquid biopsy applications. However, their low abundance presents significant analytical challenges. This study develop a versatile platform for EV N-glycoproteomic analysis (EVGpro), which enables tandem EV capture, EV protein digestion, and enrichment of N-glycopeptides.

View Article and Find Full Text PDF

The unique epigenetic patterns during gametogenesis and embryonic development indicate the existence of specialized methylation machinery. In the present study, we describe the discovery of two oocyte-specific cofactors of DNA methyltransferase 1 (DNMT1), encoded by uncharacterized genes, ferritin domain containing 1 and 2 (Ftdc1 and Ftdc2). Genetic ablation of Ftdc1 or Ftdc2 causes midgestation defects and female infertility.

View Article and Find Full Text PDF

Introduction: The utilization of denosumab in treating osteoporosis highlights promising prospects for osteoporosis intervention guided by gene targets. While omics-based research into osteoporosis pathogenesis yields a plethora of potential gene targets for clinical transformation, identifying effective gene targets has posed challenges.

Methods: We first queried the omics data of osteoporosis clinical samples on PubMed, used International Mouse Phenotyping Consortium (IMPC) to screen differentially expressed genes, and conducted preliminary functional verification of candidate genes in human Saos2 cells through osteogenic differentiation and mineralization experiments.

View Article and Find Full Text PDF

Phosphorylation is a key post-translational modification regulating protein function and biological outcomes. However, the phosphorylation dynamics orchestrating mammalian oocyte development remains poorly understood. In the present study, we apply high-resolution mass spectrometry-based phosphoproteomics to obtain the first global in vivo quantification of mouse oocyte phosphorylation.

View Article and Find Full Text PDF

Transcriptionally and translationally silent sperm undergo functional maturation during epididymis traverse, which provides sperm ability to move and is crucial for successful fertilization. However, the molecular mechanisms governing sperm maturation remain poorly understood, especially at the protein post-translational modification level. In this study, we conducted a comprehensive quantitative phosphoproteomic analysis of mouse epididymal sperm from different regions (caput, corpus, and cauda) to unveil the dynamics of protein phosphorylation during sperm maturation.

View Article and Find Full Text PDF

N-glycosylation is one of the most universal and complex protein post-translational modifications (PTMs), and it is involved in many physiological and pathological activities. Owing to the low abundance of N-glycoproteins, enrichment of N-glycopeptides for mass spectrometry analysis usually requires a large amount of peptides. Additionally, oocyte protein N-glycosylation has not been systemically characterized due to the limited sample amount.

View Article and Find Full Text PDF

Protein subcellular localization (PSL) is very important in order to understand its functions, and its movement between subcellular niches within cells plays fundamental roles in biological process regulation. Mass spectrometry-based spatio-temporal proteomics technologies can help provide new insights of protein translocation, but bring the challenge in identifying reliable protein translocation events due to the noise interference and insufficient data mining. We propose a semi-supervised graph convolution network (GCN)-based framework termed TransGCN that infers protein translocation events from spatio-temporal proteomics.

View Article and Find Full Text PDF

Tubulin-based microtubule is a core component of flagella axoneme and essential for sperm motility and male fertility. Structural components of the axoneme have been well explored. However, how tubulin folding is regulated in sperm flagella formation is still largely unknown.

View Article and Find Full Text PDF

Peroxisomes are organelles enclosed by a single membrane and are present in various species. The abruption of peroxisomes is correlated with peroxisome biogenesis disorders and single peroxisomal enzyme deficiencies that induce diverse diseases in different organs. However, little is known about the protein compositions and corresponding roles of heterogeneous peroxisomes in various organs.

View Article and Find Full Text PDF

The study of protein subcellular localization (PSL) is a fundamental step toward understanding the mechanism of protein function. The recent development of mass spectrometry (MS)-based spatial proteomics to quantify the distribution of proteins across subcellular fractions provides us a high-throughput approach to predict unknown PSLs based on known PSLs. However, the accuracy of PSL annotations in spatial proteomics is limited by the performance of existing PSL predictors based on traditional machine learning algorithms.

View Article and Find Full Text PDF

Spermatogenesis defects are important for male infertility; however, the etiology and pathogenesis are still unknown. Herein, we identified two loss-of-function mutations of STK33 in seven individuals with non-obstructive azoospermia. Further functional studies of these frameshift and nonsense mutations revealed that Stk33 male mice were sterile, and Stk33 sperm were abnormal with defects in the mitochondrial sheath, fibrous sheath, outer dense fiber, and axoneme.

View Article and Find Full Text PDF

Background: Sperm is formed through spermiogenesis, a highly complex process involving chromatin condensation that results in cessation of transcription. mRNAs required for spermiogenesis are transcribed at earlier stages and translated in a delayed fashion during spermatid formation. However, it remains unknown that how these repressed mRNAs are stabilized.

View Article and Find Full Text PDF

Epigenetic regulation, particularly post-translational modifications (PTMs) of histones, participates in spermatogonial stem cell (SSCs) differentiation. However, there is a lack of systemic studies of histone PTM regulation during the differentiation of SSCs due to its low number in vivo. Herein, we quantified dynamic changes of 46 different PTMs on histone H3.

View Article and Find Full Text PDF

Cone-rod dystrophy (CRD) is a genetically inherited retinal disease that can be associated with male infertility, while the specific genetic mechanisms are not well known. Here, we report as a causative gene of a particular syndrome including CRD and male infertility with multiple morphological abnormalities of sperm flagella (MMAF) both in human and mouse. knockout mice exhibited impaired function and morphology of photoreceptors, typified by reduced ERG amplitudes, disrupted translocation of cone arrestin, attenuated and disorganized photoreceptor outer segments (OS) disks and widen OS bases, as well as interrupted connecting cilia elongation and abnormal structures.

View Article and Find Full Text PDF

Postmeiotic spermatids use a unique strategy to coordinate gene expression with morphological transformation, in which transcription and translation take place at separate developmental stages, but how mRNAs stored as translationally inert messenger ribonucleoproteins in developing spermatids become activated remains largely unknown. Here, we report that the RNA binding protein FXR1, a member of the fragile X-related (FXR) family, is highly expressed in late spermatids and undergoes liquid-liquid phase separation (LLPS) to merge messenger ribonucleoprotein granules with the translation machinery to convert stored mRNAs into a translationally activated state. Germline-specific ablation in mice impaired the translation of target mRNAs and caused defective spermatid development and male infertility, and a phase separation-deficient FXR1 mutation in knock-in mice produced the same developmental defect.

View Article and Find Full Text PDF

Meiosis, a highly conserved process in organisms from fungi to mammals, is subjected to protein phosphorylation regulation. Due to the low abundance of phosphorylation, there is a lack of systemic characterization of phosphorylation regulation of meiosis in mammals. Using the phosphoproteomic approach, we profiled large-scale phosphoproteome of purified primary spermatocytes undergoing meiosis I, and identified 14,660 phosphorylation sites in 4419 phosphoproteins.

View Article and Find Full Text PDF