Publications by authors named "Haoran He"

Purpose: This study aimed to evaluate the effectiveness of Acceptance and Commitment Therapy (ACT) in alleviating depressive symptoms among parents of children with special needs. Additionally, it examined the moderating effects of geographic and cultural contexts, intervention parameters, and types of children's diseases.

Methods: A systematic search was conducted in PubMed, Web of Science, and the Cochrane Library.

View Article and Find Full Text PDF

Purpose: Through a meta-analysis, this study evaluated the effectiveness of Acceptance and Commitment Therapy (ACT) in reducing stress among parents of children with special needs. This study aimed to quantify the intervention effect and identify moderating variables, such as cultural differences and intervention parameters, to provide evidence for clinical practice.

Methods: Systematic searches were conducted across the ​​PsycINFO​​, PubMed, Web of Science, and Cochrane Library databases.

View Article and Find Full Text PDF

Introduction: This study investigates the dual-path effects of shared leadership on employee voice behavior through the Empowerment-Servitude Model, with a focus on uncovering the underlying psychological mechanisms. Additionally, it identifies key organizational and individual factors influencing employee voice behavior, offering theoretical insights for strategies aimed at behavioral enhancement.

Methods: This study adopted a multi-method approach, integrating online questionnaires and on-site enterprise visits across two time phases.

View Article and Find Full Text PDF

Neuromorphic diffusion models have become one of the major breakthroughs in the field of generative artificial intelligence. Unlike discriminative models that have been well developed to tackle classification or regression tasks, diffusion models aim at creating content based upon contexts learned. However, the more complex algorithms of these models result in high computational costs using today's technologies.

View Article and Find Full Text PDF

Leveraging learned strategies in unfamiliar scenarios is fundamental to human intelligence. In reinforcement learning, rationally reusing the policies acquired from other tasks or human experts is critical for tackling problems that are difficult to learn from scratch. In this work, we present a framework called Selective Myopic bEhavior Control (SMEC), which results from the insight that the short-term behaviors of prior policies are sharable across tasks.

View Article and Find Full Text PDF

Stacking superconductors (SC) with ferromagnetic materials (FM) significantly impact superconductivity, enabling the emergence of spin-triplet states and topological superconductivity. The tuning of superconductivity in SC-FM heterostructure is also reflected in the recently discovered superconducting diode effect, characterized by nonreciprocal electric transport when time and inversion symmetries are broken. Notably, in SC-FM systems, a time reversal operation reverses both current and magnetization, leading to the conceptualization of superconducting magnetization diode effect (SMDE).

View Article and Find Full Text PDF

Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.

View Article and Find Full Text PDF

The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice.

View Article and Find Full Text PDF
Article Synopsis
  • Acute liver injury involves inflammatory cell infiltration, liver structure damage, and functional abnormalities, with Acetylcorynoline (AC) showing potential protective effects.
  • In vivo studies indicated that AC lowered serum liver enzyme levels and reduced inflammation in animal models of liver injury.
  • AC appears to work by inhibiting key signaling pathways (specifically TLR4/JNK/NF-ĸB), which helps reduce inflammation and liver damage.
View Article and Find Full Text PDF

Soil contamination by cadmium (Cd) is an increasing environmental concern that potentially jeopardizes both crop productivity and human health. Silicon (Si), the Earth's second most abundant element, has shown a significant potential in reducing Cd uptake by crops. However, there is still a lack of quantitative data on the beneficial effects of Si in reducing Cd toxicity, thereby making it more difficult to ensure safe crop production.

View Article and Find Full Text PDF

Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin-orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V-doped (Bi,Sb)Te (VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.

View Article and Find Full Text PDF
Article Synopsis
  • - Soil contamination by microplastics (MPs) poses a critical global issue, impacting not only crop production but also animal safety, microbial diversity, ecological functions, and human health, necessitating a detailed study of MPs' effects on soil ecosystems
  • - Recent studies from 2021 to 2024 indicate that MPs disrupt soil health by harming crop growth, affecting soil fauna reproduction, and interfering with nutrient cycling, ultimately threatening agricultural productivity
  • - The review emphasizes the need for interdisciplinary approaches to address research gaps regarding MPs' interactions with other pollutants and their long-term impact on soil health, suggesting future directions for study in this complex area
View Article and Find Full Text PDF

Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown.

View Article and Find Full Text PDF

Background: The pathophysiology of Graves' disease (GD) involves imbalances between follicular helper T (Tfh) and follicular regulatory T (Tfr) cells, as well as oxidative stress (OS). Prunella vulgaris L. (Xia Ku Cao, XKC) and its primary bioactive compound, luteolin, are recognized for their potential in treating GD.

View Article and Find Full Text PDF

Arsenic (As) and cadmium (Cd) are two toxic metal(loid)s that pose significant risks to food security and human health. Silicon (Si) has attracted substantial attention because of its positive effects on alleviating the toxicity and accumulation of As and Cd in crops. However, our current knowledge of the comprehensive effects and detailed mechanisms of Si amendment is limited.

View Article and Find Full Text PDF

Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients.

View Article and Find Full Text PDF

Adding nanoparticles as the second phase to epoxy can achieve a good toughening effect. The aim of this paper is to simulate the toughening behavior of epoxy resin by different nanoparticles using a convenient and effective finite element method. The mechanical behaviors of epoxy resins toughened by nano core-shell polymers, liquid rubber, and nanosilica were compared by numerical simulations using the representative volume element (RVE).

View Article and Find Full Text PDF

Rivers play a vital role in the maintenance of the biosphere and human society, since they participate in the global water cycle and provide varied habitats to support biodiversity. Microhabitat heterogeneity is regarded as a key factor driving biodiversity and it plays an active ecological role in different types of mountain rivers. Whether river microhabitat heterogeneity exhibits the same ecological patterns across hydrological periods remains unclear.

View Article and Find Full Text PDF

The drinking water has become contaminated with lead in many countries across the world. In this study, a novel lead-imprinted polyvinylidene fluoride (PVDF) membrane was successfully fabricated for selective decontamination of lead from water. First of all, the membrane fabrication process was explored and optimized.

View Article and Find Full Text PDF

Insects that can perform flapping-wing flight, climb on a wall, and switch smoothly between the 2 locomotion regimes provide us with excellent biomimetic models. However, very few biomimetic robots can perform complex locomotion tasks that combine the 2 abilities of climbing and flying. Here, we describe an aerial-wall amphibious robot that is self-contained for flying and climbing, and that can seamlessly move between the air and wall.

View Article and Find Full Text PDF

Recently, selective phosphorus removal from aqueous solution has been a highly desirable strategy to combat eutrophication due to the increasingly stringent phosphorous emission standards. However, conventional adsorbents pose the limitations in phosphate removal suffering from lack of selectivity and stability under complicated condition and poor separation. In this study, novel YO based calcium-alginate (YO/SA) beads of feasible stability and highly selectivity towards phosphate by encapsulating YO nanoparticles inside calcium-alginate beads via Ca controlled gelation process was synthesized and characterized.

View Article and Find Full Text PDF

The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes spin chirality. One scientific and technological challenge is understanding and controlling the interaction between spin chirality and electric field. In this study, we investigate an unconventional electric field effect on interfacial DMI, skyrmion helicity, and skyrmion dynamics in a system with broken inversion symmetry.

View Article and Find Full Text PDF

Although soil ecological stoichiometry is constrained in natural ecosystems, its responses to anthropogenic perturbations are largely unknown. Inputs of inorganic fertilizer and crop residue are key cropland anthropogenic managements, with potential to alter their soil ecological stoichiometry. We conducted a global synthesis of 682 data pairs to quantify the responses of soil carbon (C), nitrogen (N), and phosphorus (P) and grain yields to combined inputs of crop residue plus inorganic fertilizer compared with only inorganic fertilizer application.

View Article and Find Full Text PDF

Gastrointestinal (GI) tumor is a serious disease with high mortality rates and morbidity rates worldwide. Chemotherapy is a key treatment for GI, however, systematic side effects and inevitable drug resistance complicate the situation. In the process of therapy, P-glycoprotein (P-gp) could remove chemotherapy drugs from cells, thus causing multi-drug resistance.

View Article and Find Full Text PDF

In transport, the topological Hall effect (THE) presents itself as nonmonotonic features (or humps and dips) in the Hall signal and is widely interpreted as a sign of chiral spin textures, like magnetic skyrmions. However, when the anomalous Hall effect (AHE) is also present, the coexistence of two AHEs could give rise to similar artifacts, making it difficult to distinguish between genuine THE with AHE and two-component AHE. Here, we confirm genuine THE with AHE by means of transport and magneto-optical Kerr effect (MOKE) microscopy, in which magnetic skyrmions are directly observed, and find that genuine THE occurs in the transition region of the AHE.

View Article and Find Full Text PDF