Publications by authors named "Chunxiao Mou"

African swine fever virus (ASFV) encodes multiple proteins to achieve immune escape, thereby disrupting the host's antiviral defense. This study demonstrates that the ASFV-encoded pE248R protein disrupted the Retinoic Acid-Inducible Gene I (RIG-I) mediated antiviral signaling cascade through dual regulatory mechanisms. Mechanistically, pE248R interacted with the caspase activation and recruitment domains (CARD) of RIG-I, effectively blocking its interaction with the mitochondrial adaptor MAVS.

View Article and Find Full Text PDF

African swine fever (ASF) is a highly infectious disease that poses a significant threat to the global pig industry. Recent studies have demonstrated that the African swine fever virus (ASFV) infection can cause severe inflammatory responses and promote the production of cytokines, but it is still unclear whether the viral proteins play a role in this process. Therefore, we conducted a genome-wide screening by dual luciferase activity assay.

View Article and Find Full Text PDF

African swine fever virus (ASFV) encodes over 150 viral proteins, several of which have roles in evading innate immune responses. Among these, A179L is the only Bcl-2-like protein involved in ASFV-induced apoptosis, but its other functions remain poorly understood. This study found that A179L inhibits the NF-κB signaling pathway, reducing the production of pro-inflammatory cytokines.

View Article and Find Full Text PDF

The swine industry experiences substantial economic losses annually due to the porcine reproductive and respiratory syndrome virus (PRRSV). The limited protective efficacy of existing commercial vaccines against epidemic PRRSV underscores the urgent need for innovative solutions. The mRNA vaccines, which elicit robust immune responses, have emerged as a promising avenue in vaccine development.

View Article and Find Full Text PDF

Porcine deltacoronavirus (PDCoV) is an emerging coronavirus causing economic losses to swine industries worldwide. PDCoV can infect chickens under laboratory conditions, usually with no symptoms or mild symptoms, and may cause outbreaks in backyard poultry and wildfowl, posing a potential risk of significant economic loss to the commercial poultry industry. However, the reasons for such a subdued reaction after infection are not known.

View Article and Find Full Text PDF

Porcine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), have caused enormous economic losses to the global pig industry. Unfortunately, new variants emerge of these viruses will make it difficult for pigs vaccinated with the appropriate vaccine to develop protective immunity. Hence, it is urgent to explore effective therapeutic agents and targets against these viruses.

View Article and Find Full Text PDF

The accessory proteins of coronaviruses play a crucial role in facilitating virus-host interactions and modulating host immune responses. Previous study demonstrated that the NS7a protein of porcine deltacoronavirus (PDCoV) partially hindered the host immune response by impeding the induction of IFN-α/β. However, the potential additional functions of NS7a protein in evading innate immunity have yet to be elucidated.

View Article and Find Full Text PDF

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV) is a member of the genera that has been associated with acute watery diarrhea and vomiting in swine. Unfortunately, no effective vaccines and antiviral drugs for PEDV are currently available. Reverse genetics systems are crucial tools for these researches.

View Article and Find Full Text PDF

Outbreaks of viral infectious diseases, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV), pose a great threat to human health. Viral spread is accelerated worldwide by the development of cold chain logistics; Therefore, an effective antiviral approach is required. In this study, it is aimed to develop a distinct antiviral strategy using nanozymes with low-temperature adaptability, suitable for cold chain logistics.

View Article and Find Full Text PDF

Getah virus (GETV) was becoming more serious and posing a potential threat to animal safety and public health. Currently, there is limited comprehension regarding the pathogenesis and immune evasion mechanisms employed by GETV. Our study reveals that GETV infection exhibits the capacity for interferon antagonism.

View Article and Find Full Text PDF

Alphavirus is a type of arbovirus that can infect both humans and animals. The amino acid sequence of the 6K protein, being one of the structural proteins of the alphavirus, is not conserved. Deletion of this protein will result in varying effects on different alphaviruses.

View Article and Find Full Text PDF

Antiviral vaccines for pig diseases are essential to prevent epidemic outbreaks. However, their production is often hindered by inefficient manufacturing processes that yield lower quantities of the vaccine. To accelerate the progress of various areas of bioproduction, we have considered the necessity of enhancing viral replication efficiency by optimizing ST (swine testicular) cell lines that are commonly utilized in virus manufacturing.

View Article and Find Full Text PDF

Swine acute diarrhea syndrome (SADS) is first reported in January 2017 in Southern China. It subsequently causes widespread outbreaks in multiple pig farms, leading to economic losses. Therefore, it is an urgent to understand the molecular mechanisms underlying the pathogenesis and immune evasion of Swine acute diarrhea syndrome coronavirus (SADS-CoV).

View Article and Find Full Text PDF

In 2021, two atypical porcine pestivirus (APPV) strains, AH06/2021 and AH22/2021, were identified from suckling piglets showing congenital tremor in Anhui Province, China. Genome sequence analysis indicated that the two strains shared 81.19% to 93.

View Article and Find Full Text PDF

Porcine sapelovirus (PSV) is an emerging pathogen associated with symptoms of enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in swine, resulting in significant economic losses. Although PSV is reported to trigger cell apoptosis, its specific molecular mechanism is unclear. In this research, the cell apoptosis induced by PSV infection and its underlying mechanisms were investigated.

View Article and Find Full Text PDF

Recurrent outbreaks of senecavirus A (SVA)-associated vesicular disease have led to a large number of infected pigs being culled and has caused considerable economic losses to the swine industry. Although SVA was discovered 2 decades ago, knowledge about the evolutionary and transmission histories of SVA remains unclear. Herein, we performed an integrated analysis of the recombination, phylogeny, selection, and spatiotemporal dynamics of SVA.

View Article and Find Full Text PDF

(), a probiotic bacterium and feeding additive, is widely used for heterologous antigen expression and protective immunisation. Porcine epidemic diarrhoea virus (PEDV) invades swine via mucosal tissue. To enhance the mucosal immune response to PEDV, we modified to express a PEDV antigen and used it as a mucosal vaccine delivery system.

View Article and Find Full Text PDF

Senecavirus A (SVA) is a member of the genus of the family Picornaviridae. SVA-associated vesicular disease (SAVD) outbreaks have been extensively reported since 2014-2015. Characteristic symptoms include vesicular lesions on the snout and feet as well as lameness in adult and even death in .

View Article and Find Full Text PDF

Senecavirus A (SVA) is an emerging picornavirus that has been associated with vesicular disease and neonatal mortality in swine. The construction of SVA virus carrying foreign reporter gene provides a powerful tool in virus research. However, it is often fraught with rescuing a recombinant picornavirus harboring a foreign gene or maintaining the stability of foreign gene in the virus genome.

View Article and Find Full Text PDF

Atypical porcine pestivirus (APPV) is an emerging porcine virus that threatens global swine production. Pestiviruses can prevent interferon (IFN) production to avoid the host innate immune response, and the N viral protein can play a critical role. Knowledge of the host immune response to APPV infection is limited.

View Article and Find Full Text PDF

Porcine astrovirus (PAstV), associated with mild diarrhea and neurological disease, is transmitted in pig farms worldwide. The purpose of this study is to elucidate the main factors affecting codon usage to PAstVs. Phylogenetic analysis showed that the subtype PAstV-5 sat at the bottom of phylogenetic tree, followed by PAstV-3, PAstV-1, PAstV-2, and PAstV-4, indicating that the five existing subtypes (PAstV1-PAstV5) may be formed by multiple differentiations of PAstV ancestors.

View Article and Find Full Text PDF

Senecavirus A (SVA)-associated vesicular disease (SAVD) has extensively been present in the swine industry during the past years. The mechanisms of SVA-host interactions at the molecular level, subsequent to SVA infection, are unclear. We studied the gene expression profiles of LLC-PK1 cells, with or without SVA infection, for 6 h and 12 h using an RNA-seq technology.

View Article and Find Full Text PDF

Atypical porcine pestivirus (APPV) has been identified as the main causative agent for congenital tremor (CT) type A-II in piglets, which is threatening the health of the global swine herd. However, the evolution of APPV remains largely unknown. In this study, phylogenetic analysis showed that APPV could be divided into three phylogroups (I, II, and III).

View Article and Find Full Text PDF

Background: Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome, and is associated with a number of other diseases. PCV2 is widely distributed in most developed swine industries, and is a severe economic burden. With an eye to developing an effective, safe, and convenient vaccine against PCV2-associated diseases, we have constructed a recombinant Bacillus subtilis strain (B.

View Article and Find Full Text PDF