98%
921
2 minutes
20
Phosphorus-induced harmful algae blooms elicited attention, and both microalgae harvesting and phosphorus removal are essential, especially preventing secondary pollution. In this study, starved Chlorella vulgaris removed 68.73 % of dissolved inorganic phosphorus (DIP) compared to 37.47 % of dissolved organic phosphorus (DOP). Microalgae growth promoted the increase of extracellular organic matter, which had little effect on phosphorus removal. As incubation time increased, the phosphorus rebound was even higher than the original, which was not consistent with the continued growth of the microalgae cells, indicating that phosphorus uptake by microalgae alone could not inhibit algal blooms. A starch-based flocculant fed after the phycoremediation process exhibited effective microalgae harvesting, reducing DIP and DOP by 72.06 % and 48.31 %, respectively. Only 1/3 flocculant dose was needed to treat suspensions supplemented with DIP compared with DOP. The study offers an eco-friendly technology for simultaneous phosphorus removal and microalgae harvesting by combining Chlorella vulgaris with natural flocculants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131885 | DOI Listing |
Microbiol Spectr
September 2025
Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China.
Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.
View Article and Find Full Text PDFWater Res
August 2025
College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:
This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.
View Article and Find Full Text PDF