98%
921
2 minutes
20
MicroRNA-21 (miRNA-21) is a significant biomarker for the development and progression of diverse cancers but is present in relatively low concentrations. Detecting such low-abundance molecules accurately can be challenging, especially in early-stage cancers where the concentration may be even lower. Herein, a self-calibration biosensing platform based on 3D novel MNPs-IL-rGO-AuNPs nanocomposites was successfully established for the ultrasensitive detection of miRNA-21. Duplex-specific nuclease (DSN) was introduced to recognize perfectly matched duplexes and trigger target recycling, enhancing the specificity and sensitivity of the biosensor. DSN-assisted target recycling, in conjunction with magnetic separation enrichment and high-performance MNPs-IL-rGO-AuNPs, collectively formed a multiple-signal amplification strategy. The obtained biosensor could output dual signals in both electrochemical and fluorescent modes, enabling self-correcting detection to enhance the accuracy. The obtained dual-mode biosensor prepared exhibited a wide detection range from 5 fM to 100 nM with a remarkably low LOD of 1.601 fM. It accomplished the sensitive evaluation of miRNA-21 in total RNA extracted from various human cancer cell lines and normal cell lines. Additionally, the greatly satisfactory outcomes in the analysis of human serum samples suggested that the proposed biosensor was a powerful screening candidate in early clinical diagnosis of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116009 | DOI Listing |
Anal Chem
August 2025
Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China.
A highly sensitive self-powered biosensor is designed based on gold-platinum nanorods (AuPt NRs) and the cascade reaction of catalytic hairpin assembly (CHA) and hybrid chain reaction (HCR) toward the miRNA-141 assay. As a cosignal accelerator, AuPt NRs enhance electrical conductivity between glucose oxidase (GOD) and a carbon paper (CP) electrode, thereby assisting in output signal enhancement. The cascade reaction of CHA-HCR is employed to efficiently amplify the detection signal and improve the sensitivity of the self-powered biosensor.
View Article and Find Full Text PDFSmall
July 2025
Department of Laboratory Medicine, Gene Diagnostic Research Center, Fujian Key Laboratory of Laboratory Medicine, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
Hepatitis B virus (HBV) infection remains a significant global public health issue, and rapid detection of HBV DNA is crucial for disease prevention and control. However, traditional methods for HBV DNA detection are limited by their reliance on precise instruments and single readout, which can hardly meet the requirements of on-site detection. In this study, the Mg-enhanced trans-cleavage activity of clustered regularly interspaced short palindromic repeats/associated protein 12a (CRISPR/Cas12a) is reported and coupled with loop-mediated isothermal amplification (LAMP) and Au@Pt nanoparticles as a signaling reporter for on-site detection of HBV DNA.
View Article and Find Full Text PDFBioelectrochemistry
December 2025
The Office of Drug & Medical Apparatus Clinical Trial Institution, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214000, Jiangsu, PR China. Electronic address:
This study presents a homogeneous electrochemiluminescence (ECL) biosensor for ultrasensitive detection of HEK293 cells by targeting the hERG potassium channel at the single-cell level. The biosensor integrates multiple signal amplification steps, including photocleavable DNA-antibody conjugates, entropy-driven strand displacement, T7 RNA polymerase-mediated transcription, and CRISPR/Cas12a-mediated trans-cleavage. This cascade enables precise and robust signal enhancement.
View Article and Find Full Text PDFBME Front
July 2025
School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
Accurate and rapid detection of disease biomarkers is critical for early diagnosis, timely intervention, and effective disease management. This strategy is exemplified through the development of 2 biosensors for detecting HIV-1 DNA and HIV-1 p24, biomarkers associated with acquired immunodeficiency syndrome (AIDS). We propose a general biosensing strategy that leverages a treble signal amplification cascade, demonstrating its versatility and applicability across diverse biomolecular targets.
View Article and Find Full Text PDFMikrochim Acta
June 2025
School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
Bacterial and viral co-infections significantly exacerbate morbidity and mortality. Rapid, sensitive, and parallel detection of these pathogens remains a critical challenge. Here, an orthogonal CRISPR/Cas system facilitated dual-color fluorescence fiber-embedded optofluidic nano-biochip (CD-FOB) was fabricated.
View Article and Find Full Text PDF