Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate and rapid detection of disease biomarkers is critical for early diagnosis, timely intervention, and effective disease management. This strategy is exemplified through the development of 2 biosensors for detecting HIV-1 DNA and HIV-1 p24, biomarkers associated with acquired immunodeficiency syndrome (AIDS). We propose a general biosensing strategy that leverages a treble signal amplification cascade, demonstrating its versatility and applicability across diverse biomolecular targets. The method integrates multiple amplification mechanisms to achieve unparalleled sensitivity. Initially, the hybridization of 2 aided probes with the target triggers isothermal amplification facilitated by polymerase and nicking enzyme, providing a robust preliminary signal enhancement. Repeated cycles of primer extension, nicking, and signal primer dissociation then generate multiple signal primers. These primers are further amplified via rolling circle amplification (RCA), resulting in an important secondary signal boost. Finally, the amplified products activate CRISPR-Cas12a-mediated trans-cleavage, achieving a tertiary level of signal enhancement. This cascade amplification approach achieves remarkable sensitivity, with detection limits of 62 aM for nucleic acids and 8.48 pg/ml for proteins, positioning it as a broadly applicable framework. Clinical samples were assayed, which indicates its capability in clinical diagnosis. Beyond HIV detection, the modular design of this strategy allows adaptation for various biomarkers, showcasing its potential as a universal platform for molecular diagnostics in healthcare and research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214299PMC
http://dx.doi.org/10.34133/bmef.0139DOI Listing

Publication Analysis

Top Keywords

general biosensing
8
biosensing strategy
8
cascade amplification
8
hiv detection
8
signal enhancement
8
amplification
6
signal
6
strategy
4
strategy based
4
based cascade
4

Similar Publications

Visualizing intracellular glycine with two-dye and single-dye ratiometric RNA-based sensors.

Nucleic Acids Res

September 2025

Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States.

Glycine is an important metabolite and cell signal in diverse organisms, yet tools to visualize intracellular glycine dynamics have not been developed. In this study, diverse and bright RNA-based glycine biosensors were developed by fusing the architecturally complex glycine riboswitch with Broccoli class fluorogenic aptamers. The brightest sensor with the highest activation, glyS, and its two-dye ratiometric counterpart, Pepper-glyS, allowed for visualization of a drug-induced accumulation of endogenous glycine in live Escherichia colicells.

View Article and Find Full Text PDF

Biosensors for Detecting Small Rho GTPases: Monitoring Expression and Activation.

Bioessays

September 2025

MY Small G Protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia.

Advanced biosensing technologies, such as Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET), have enabled real-time, high-resolution tracking of Rho GTPase activity, surpassing traditional methods like pull-down assays. However, current biosensors mainly detect the GTP-bound active state through effector interactions, without directly measuring Rho GTPase expression or identifying related biomarkers of abnormal activation. Small Rho GTPases are essential molecular switches that regulate key cellular processes such as cytoskeletal organization, cell movement, polarity, vesicle trafficking, and the cell cycle.

View Article and Find Full Text PDF

Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Phosphatidic acid (PA) regulates lipid homeostasis and vesicular trafficking, yet high-affinity tools to study PA in live cells are lacking. We identified the lipin-like sequence of Nir1 (PILS-Nir1) as a candidate PA biosensor based on structural analysis of Nir1's LNS2 domain. Using liposome-binding assays and pharmacological and genetic manipulations in HEK293A cells expressing fluorescent PILS-Nir1, we found that while PILS-Nir1 binds PA and PIP2in vitro, only PA is necessary and sufficient for membrane localization in cells.

View Article and Find Full Text PDF