Publications by authors named "Ruijie Fu"

Background: Low-intensity pulsed ultrasound (LIPUS) is an effective therapy for craniofacial bone regeneration. Paracrine signaling from mesenchymal stem cells (MSCs) plays a critical role in bone repair, but the impact of LIPUS on MSC-derived secretome remains unclear. This study investigates whether LIPUS enhances the osteogenic and angiogenic potential of MSCs through modulation of growth factor secretion.

View Article and Find Full Text PDF

Inflammatory bowel disease is chronic gastrointestinal disorder characterized by persistent intestinal inflammation, which can lead to severe complications such as impaired intestinal barrier function and dysbiosis. Conventional therapies have challenges such as oxidative stress and insufficient intestinal colonization that hinder the treatment efficacy. Therapeutic strategies based on micro-nano robotic delivery are promising to address the limitations of current treatments by enabling precise targeting, enhancing bioavailability, and improving therapeutic outcomes.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infection remains a significant global public health issue, and rapid detection of HBV DNA is crucial for disease prevention and control. However, traditional methods for HBV DNA detection are limited by their reliance on precise instruments and single readout, which can hardly meet the requirements of on-site detection. In this study, the Mg-enhanced trans-cleavage activity of clustered regularly interspaced short palindromic repeats/associated protein 12a (CRISPR/Cas12a) is reported and coupled with loop-mediated isothermal amplification (LAMP) and Au@Pt nanoparticles as a signaling reporter for on-site detection of HBV DNA.

View Article and Find Full Text PDF

The rapid, simple, and sensitive detection of nucleic acid biomarkers plays a significant role in clinical diagnosis. Herein, we develop a label-free and point-of-care approach for isothermal DNA detection through the trans-cleavage activity of CRISPR-Cas12 and the growth of gold nanomaterials in agarose gel. The presence of the target can activate CRISPR-Cas12a to cleave single-stranded DNA, thus modulating the length and number of DNA sequences that mediate the growth of gold nanoparticles (AuNPs) or gold nanorods (AuNRs).

View Article and Find Full Text PDF

The escalating growth in computing power and the advent of quantum computing present a critical threat to the security of modern cryptography. Two-factor authentication strategies can effectively resist brute-force attacks to improve the security of access control. Herein, we proposed a two-factor and two-authentication entity strategy based on the trans-cleavage activity of CRISPR-Cas and the "dual-step" sequence-specific cleavage of Argonaute.

View Article and Find Full Text PDF

DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques.

View Article and Find Full Text PDF

Urinalysis is one of the predominant tools for clinical testing owing to the abundant composition, sufficient volume, and non-invasive acquisition of urine. As a critical component of routine urinalysis, urine protein testing measures the levels and types of proteins, enabling the early diagnosis of diseases. Traditional methods require three separate steps including strip testing, protein/creatinine ratio measurement, and electrophoresis respectively to achieve qualitative, quantitative, and classification analyses of proteins in urine with long time and cumbersome operations.

View Article and Find Full Text PDF

DNA has emerged as a promising tool to build logic gates for biocomputing. However, prevailing methodologies predominantly rely on hybridization reactions or structural alterations to construct DNA logic gates, which are limited in simplicity and diversity. Herein, we developed simple and smart DNA-based logic gates for biocomputing through the DNA-mediated growth of gold nanomaterials without precise structure design and probe modification.

View Article and Find Full Text PDF

Osteoporosis is a metabolic disease characterized by bone density and trabecular bone loss. Bone loss may affect dental implant osseointegration in patients with osteoporosis. To promote implant osseointegration in osteoporotic patients, we further used a nonthermal atmospheric plasma (NTAP) treatment device previously developed by our research group.

View Article and Find Full Text PDF

Sexual dysfunction is common in males with chronic kidney disease (CKD), but yet the prevalence and specific relationship between CKD and sexual dysfunction, especially premature ejaculation (PE), remain to be investigated in China; This study aims to examine the prevalence and association between CKD and sexual dysfunction in male patients in China; In this cross-sectional, non-interventional, observational study conducted at a single center. 72 male patients with CKD were enrolled. Data collection included socio-demographic information, assessments via the 5-item version of the International Index of Erectile Function (IIEF-5), the Chinese version of the Premature Ejaculation Diagnostic Tool, the Patient Health Quentionnnaire-9 and the General Anxiety Disorder-7.

View Article and Find Full Text PDF

Argonaute (Ago) as a powerful enzyme has provided new insights into biosensing due to its programmability, high sensitivity, and user-friendly operation. However, current strategies mainly rely on phosphorylated guide DNA to modulate the cleavage activity of Ago, which is limited in versatility and simplicity. Herein, the authors report the Mn-enhanced cleavage activity of Ago and employ Mn-ions with variable valence to regulate the activity of Pyrococcus furiosus Ago (PfAgo) for biosensing applications.

View Article and Find Full Text PDF

Accurate identification of small tea buds is a key technology for tea harvesting robots, which directly affects tea quality and yield. However, due to the complexity of the tea plantation environment and the diversity of tea buds, accurate identification remains an enormous challenge. Current methods based on traditional image processing and machine learning fail to effectively extract subtle features and morphology of small tea buds, resulting in low accuracy and robustness.

View Article and Find Full Text PDF

A bone defect refers to the loss of bone tissue caused by trauma or lesion. Bone defects result in high morbidity and deformity rates worldwide. Autologous bone grafting has been widely applied in clinics as the gold standard of treatment; however, it has limitations.

View Article and Find Full Text PDF

Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants.

View Article and Find Full Text PDF

The accuracy of fish farming and real-time monitoring are essential to the development of "intelligent" fish farming. Although the existing instance segmentation networks (such as Maskrcnn) can detect and segment the fish, most of them are not effective in real-time monitoring. In order to improve the accuracy of fish image segmentation and promote the accurate and intelligent development of fish farming industry, this article uses YOLOv5 as the backbone network and object detection branch, combined with semantic segmentation head for real-time fish detection and segmentation.

View Article and Find Full Text PDF

Due to their superiority in the simple design and precise targeting, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have attracted significant interest for biosensing. On the one hand, CRISPR-Cas systems have the capacity to precisely recognize and cleave specific DNA and RNA sequences. On the other hand, CRISPR-Cas systems such as orthologs of Cas9, Cas12, and Cas13 exhibit cis-cleavage or trans-cleavage activities after recognizing the target sequence.

View Article and Find Full Text PDF

The recent emergence of human coronaviruses (CoVs) causing severe acute respiratory syndrome (SARS) is posing a great threat to global public health. Therefore, the rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments, saving people's lives and preventing epidemics. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information.

View Article and Find Full Text PDF

Portable and sensitive detection of carbendazim (CBD) is highly desirable for food safety and environmental protection. Herein, a portable immunosensor for the sensitive detection of CBD is proposed based on alkaline phosphatase (ALP)-labeled and secondary antibody-modified gold nanoparticles (AuNPs). The quantification is based on ALP catalyzing the dephosphorylation of glucose-1-phosphate disodium salt to generate glucose, thus converting the concentration of CBD into glucose, thereby realizing the portable detection of CBD by personal glucose meter.

View Article and Find Full Text PDF

Hydrophilic dental implants are gaining increasing interest for their ability to accelerate bone formation. However, commercially available hydrophilic implants, such as SLActive™, have some major limitations due to their time-dependent biological aging and lower cost-effectiveness. The non-thermal atmospheric plasma (NTAP) treatment is a reliable way to gain a hydrophilic surface and enhance osseointegration.

View Article and Find Full Text PDF

The outbreak of citrus brown spot because of Alternaria is one of the most destructive citrus diseases. Additionally, Alternaria species produce highly toxic mycotoxins. Mass screening is a valid method to control the spread of Alternaria.

View Article and Find Full Text PDF

Photothermal reagent-mediated portable detection platforms using thermometers as signal readers have received extensive attention due to their simplicity, low cost, and practicality. However, exploitation photothermal reagent with excellent photothermal conversion effect, convenient to synthesize, preferably without any modification for biosensing application, is still challenging. Herein, a simple and rapid seed-mediated in situ synthesis strategy has been developed for the preparation of gold nanostars (AuNSs) with remarkable photothermal conversion effect.

View Article and Find Full Text PDF
Article Synopsis
  • Non-thermal atmospheric plasma (NTAP) treatment modifies titanium (Ti) surfaces to enhance their hydrophilicity and reduce carbon contamination, leading to improved osteogenic responses in bone formation.
  • The study examined how the PI3K/Akt signaling pathway contributes to osteogenic activities on NTAP-treated Ti surfaces, using a PI3K inhibitor (LY294002) to explore its effects on osteoblast function.
  • Results showed that inhibiting the PI3K/Akt pathway decreased osteoblast proliferation, alkaline phosphatase activity, and expression of key osteogenesis-related genes, indicating that this pathway plays a crucial role in promoting bone formation via NTAP-Ti surfaces.
View Article and Find Full Text PDF

Herein, we propose a sensitive fluorescent assay for organophosphorus pesticides (OPs) detection based on a novel strategy of activating the CRISPR-Cas12a system. Specifically, acetylcholinesterase (AChE) hydrolyzes acetylthiocholine into thiocholine (TCh). Subsequently, TCh induces the degradation of MnO nanosheets and generates sufficient Mn ions to activate the Mn-dependent DNAzyme.

View Article and Find Full Text PDF

A convenient, fast, and colorful colorimetric platform with high resolution for acetylcholinesterase (AChE) activity and its inhibitors detection based on the regulation of oxidase-like nanozyme-mediated etching of gold nanorods (AuNRs) has been proposed in this work. MnO nanosheets are selected as the nanozyme. Their excellent oxidase-like activity enables the etching process to proceed smoothly without the usage of unstable HO.

View Article and Find Full Text PDF

The monitoring of the fungal genus Alternaria, which causes destructive brown spot disease in citruses worldwide and produces highly toxic mycotoxins, is extremely important to protect citrus and human health. In this work, we describe an ultrasensitive colorimetric method for the detection of genomic DNA of Alternaria from citrus fruit samples, using a system consisting of five groups of reporter probes. Each reporter probe is prepared by coupling recognition DNA and horseradish peroxidase (HRP) on the surface of gold nanoparticle (AuNP) through a convenient and low-cost freezing-assisted method.

View Article and Find Full Text PDF