Translational control is crucial for maintaining cellular homeostasis, yet the distinct features and regulatory requirements governing protein synthesis during erythropoiesis remain unclear. Here, we reveal that erythroid cells exhibit an extraordinarily high demand for protein synthesis, which is required for their differentiation but also implies the need for tight regulation to prevent excessive erythropoiesis. Notably, we identify significant phosphorylation of eukaryotic elongation factor 2 (eEF2) at threonine 56 during erythroid differentiation, which reduces protein synthesis and acts as a molecular brake to limit unchecked erythropoiesis.
View Article and Find Full Text PDFTo expand the detection capabilities of silicon (Si)-based photodetector and address key scientific challenges such as low light absorption efficiency and short carrier lifetime in Si-based graphene photodetector. This work introduces a novel Si-based Schottky coupled structure by in situ growth of 3D-graphene and molybdenum disulfide quantum dots (MoS QDs) on Si substrates using chemical vapor deposition (CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques. The findings validate the "dual-enhanced absorption" effect, enhancing the understanding of the mechanisms that improve optoelectronic performance.
View Article and Find Full Text PDFThe limitations of two-dimensional (2D) graphene in broadband photodetector are overcome by integrating nitrogen (N) doping into three-dimensional (3D) structures within silicon (Si) via plasma-assisted chemical vapor deposition (PACVD) technology. This contributes to the construction of vertical Schottky heterojunction broad-spectrum photodetectors and applications in logic devices and image sensors. The natural nanoscale resonant cavity structure of 3D-graphene enhances photon capture efficiency, thereby increasing photocarrier generation.
View Article and Find Full Text PDFSkin macrophages are critical to maintain and restore skin homeostasis. They serve as major producers of cytokines and chemokines in the skin, participating in diverse biological processes such as wound healing and psoriasis. The heterogeneity and functional diversity of macrophage subpopulations endow them with multifaceted roles in psoriasis development.
View Article and Find Full Text PDFWearable soft contact lens sensors for continuous and nondestructive intraocular pressure (IOP) monitoring are highly desired as glaucoma and postoperative myopia patients grow, especially as the eyestrain crowd increases. Herein, a smart closed-loop system is presented that combines a TiCT MXene-based soft contact lens (MX-CLS) sensor, wireless data transmission units, display, and warning components to realize continuous and nondestructive IOP monitoring/real-time display. The fabricated MX-CLS device exhibits an extremely high sensitivity of 7.
View Article and Find Full Text PDFA breakthrough in the performance of bionic optical structures will only be achieved if we can obtain an in-depth understanding of the synergy mechanisms operating in natural optical structures and find ways to imitate them. In this work, inspired by feline eyes, an optical substrate that takes advantage of a synergistic effect that occurs between resonant and reflective structures was designed. The synergistic effect between the reflective and resonant components leads to a Raman enhancement factor (EF) of 1.
View Article and Find Full Text PDFPrecise monitoring of internal temperature is vital for thermal homeostasis in mammals. For decades, warm-sensitive neurons (WSNs) within the preoptic area (POA) were thought to sense internal warmth, using this information as feedback to regulate body temperature (T). However, the cellular and molecular mechanisms by which WSNs measure temperature remain largely undefined.
View Article and Find Full Text PDFFollicular dendritic cells (FDCs) are a specialized type of stromal cells that exclusively reside in B-cell follicles. When inflammation occurs, the FDC network is reorganized to support germinal center (GC) polarization into the light zone (LZ) and dark zone (DZ). Despite the indispensable role of FDCs in supporting humoral responses, the FDC regulatory requirements remain incompletely defined.
View Article and Find Full Text PDFMicrosyst Nanoeng
May 2022
Flexible multichannel electrode arrays (fMEAs) with multiple filaments can be flexibly implanted in various patterns. It is necessary to develop a method for implanting the fMEA in different locations and at various depths based on the recording demands. This study proposed a strategy for reducing the microelectrode volume with integrated packaging.
View Article and Find Full Text PDFThree-dimensional graphene (3D-graphene) is used in surface-enhanced Raman spectroscopy (SERS) because of its plasmonic nanoresonator structure and good ability to interact with light. However, a thin (3-5 nm) layer of amorphous carbon (AC) inevitably appears as a template layer between the 3D-graphene and object substrate when the 3D-graphene layer is synthesized, weakening the enhancement factor. Herein, two-dimensional graphene (2D-graphene) is employed as a template layer to directly synthesize 3D-graphene on a germanium (Ge) substrate via plasma-assisted chemical vapor deposition, bypassing the formation of an AC layer.
View Article and Find Full Text PDFLong noncoding RNAs are widely implicated in diverse disease processes. Nonetheless, their regulatory roles in bone resorption are undefined. Here, we identify lncRNA Nron as a critical suppressor of bone resorption.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Surface-enhanced Raman scattering (SERS) substrates based on graphene and its derivatives have recently attracted attention among those interested in the detection of trace molecules; however, these substrates generally show poor uniformity, an unsatisfactory enhancement factor, and require a complex fabrication process. Herein, we design and fabricate three-dimensional (3D) graphene/silicon (3D-Gr/Si) heterojunction SERS substrates to detect various types of molecules. Notably, the detection limit of 3D-Gr/Si can reach 10 M for rhodamine 6G (R6G) and rhodamine B (RB), 10 M for crystal violet (CRV), copper(II) phthalocyanine (CuPc), and methylene blue (MB), 10 M for dopamine (DA), 10 M for bovine serum albumin (BSA), and 10 M for melamine (Mel), which is superior to most reported graphene-based SERS substrates.
View Article and Find Full Text PDFTheranostics
July 2021
() infection of macrophage induces NLRC4 inflammasome-mediated production of the pro-inflammatory cytokines IL-1β. Post-translational modifications on NLRC4 are critical for its activation. Sirtuin3 (SIRT3) is the most thoroughly studied mitochondrial nicotinamide adenine dinucleotide (NAD) -dependent deacetylase.
View Article and Find Full Text PDFNature
April 2021
Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice.
View Article and Find Full Text PDFMicromachines (Basel)
January 2021
Intraocular pressure (IOP) is an essential indicator of the diagnosis and treatment of glaucoma. IOP has an apparent physiological rhythm, and it often reaches its peak value at night. To avoid missing the peak value at night and sample the entire rhythm cycle, the continuous monitoring of IOP is urgently needed.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAs the second leading cause of blindness in the world, glaucoma is mainly caused by persistent high intraocular pressure (IOP) that compresses the optic nerve and causes permanent damage. Noninvasive continuous monitoring of IOP is an essential method for the diagnosis and treatment of glaucoma. In this paper, we propose a new strain gauge material based on graphene nanowalls (GNWs) for continuous monitoring of IOP with high sensitivity in a wide range.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Three-dimensional graphene (3D-Gr) with excellent light absorption properties has received enormous interest, but in conventional processes to prepare 3D-Gr, amorphous carbon layers are inevitably introduced as buffer layers that may degrade the performance of graphene-based devices. Herein, 3D-Gr is prepared on germanium (Ge) using two-dimensional graphene (2D-Gr) as the buffer layer. 2D-Gr as the buffer layer facilitates the in situ synthesis of 3D-Gr on Ge by plasma-enhanced chemical vapor deposition (PECVD) by promoting 2D-Gr nucleation and reducing the barrier height.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
The evaluation of intracellular reactive oxygen species (ROS) would greatly deepen the understanding of cell metabolism/proliferation and tumor detection. However, current long-acting level tracking techniques for intracellular ROS remain unsuited to practical applications. To solve this problem, we synthesized cyclotriphosphazene-doped graphene quantum dots (C-GQDs) whose quantum yield is highly sensitive to ROS (increased by 400% from 0.
View Article and Find Full Text PDFThe innate immune sensor NLRP3 assembles an inflammasome complex with NEK7 and ASC to activate caspase-1 and drive the maturation of proinflammatory cytokines IL-1β and IL-18. NLRP3 inflammasome activity must be tightly controlled, as its over-activation is involved in the pathogenesis of inflammatory diseases. Here, we show that NLRP3 inflammasome activation is suppressed by a centrosomal protein Spata2.
View Article and Find Full Text PDFDirect integration of monolayer graphene on a silicon (Si) substrate is realized by a simple thermal annealing process, involving a top copper (Cu) layer as the catalyst and an inserted polymethylmethacrylate (PMMA) as the carbon source. After spin-coating the PMMA carbon source on the Si substrate, the Cu catalyst was deposited on PMMA/Si by electron beam evaporation. After that, graphene was directly synthesized on Si by decomposition and dehydrogenation of PMMA and the catalyzation effect of Cu under a simple thermal annealing process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
With the minimization and higher power of electronic devices, materials with effective heat dissipation and high electrical insulation have attracted relentless interest. Especially, highly thermally conductive, highly electrically insulating but low filler content of polymer-based composites are desirable. Herein, a facile and eco-friendly cotton candy-templated method (CTM) to construct three-dimensional heat transport pathways inside epoxy resin is reported.
View Article and Find Full Text PDFMost tissue-resident macrophage (RTM) populations are seeded by waves of embryonic hematopoiesis and are self-maintained independently of a bone marrow contribution during adulthood. A proportion of RTMs, however, is constantly replaced by blood monocytes, and their functions compared to embryonic RTMs remain unclear. The kinetics and extent of the contribution of circulating monocytes to RTM replacement during homeostasis, inflammation, and disease are highly debated.
View Article and Find Full Text PDFNanoscale
October 2019
High thermal conductivity polymer composites at low filler loading are of considerable interest because of their wide range of applications. The construction of three-dimensional (3D) interconnected networks can offer a high-efficiency increase for the thermal conductivity of polymer composites. In this work, a facile and scalable method to prepare graphene foam (GF) via sacrificial commercial polyurethane (PU) sponge templates was developed.
View Article and Find Full Text PDF