TRPA1 (Transient Receptor Potential Ankyrin 1), a cation channel predominantly expressed in sensory neurons, plays a critical role in detecting noxious stimuli and mediating pain signal transmission. As a key player in nociceptive signaling pathways, TRPA1 has emerged as a promising therapeutic target for the development of novel analgesics. Crotalphine (CRP), a 14-amino acid peptide, has been demonstrated to specifically activate TRPA1 and elicit potent analgesic effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
ADP-Ribosylation Factor (ARF) small GTPases have been found to act in vesicle fission through a direct ability to tubulate membrane. We have pursued cryoelectron microscopy (EM) to reveal at 3.9 Å resolution how ARF6 assembles into a protein lattice on tubulated membrane.
View Article and Find Full Text PDFNat Commun
December 2024
Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.
View Article and Find Full Text PDFThe ADP-Ribosylation Factor (ARF) small GTPases have been found to act in vesicle fission through a direct ability to tubulate membrane. Here, we have used cryo-electron microscopy (EM) to solve the structure of an ARF6 protein lattice assembled on tubulated membrane to 3.9 Å resolution.
View Article and Find Full Text PDFAnn Transl Med
November 2021
Background: A bibliometric analysis was performed to reveal the current status of investigations in infectious diseases in patients with liver transplantation (LT) and to prioritize future research needs.
Methods: The present study comprehensively retrieved publications relevant to infectious diseases in LT recipients published between 2010 and 2020. The search was conducted on the Web of Science (WoS) database.
This study seeks to assess the imbibition kinetics of low radioactive wastewater (from the DayaBay nuclear power plant) into a partially saturated ternary-binder mortar, as well as the sorption kinetics of Co and Cs from the water. Mortar samples with the initial saturation degrees of 0, 0.4, 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2021
The heme-copper oxidase superfamily comprises cytochrome c and ubiquinol oxidases. These enzymes catalyze the transfer of electrons from different electron donors onto molecular oxygen. A B-family cytochrome c oxidase from the hyperthermophilic bacterium Aquifex aeolicus was discovered previously to be able to use both cytochrome c and naphthoquinol as electron donors.
View Article and Find Full Text PDFThe sorting nexin (SNX) family of proteins deform the membrane to generate transport carriers in endosomal pathways. Here, we elucidate how a prototypic member, SNX1, acts in this process. Performing cryoelectron microscopy, we find that SNX1 assembles into a protein lattice that consists of helical rows of SNX1 dimers wrapped around tubular membranes in a crosslinked fashion.
View Article and Find Full Text PDFBackground: Immunosuppression is an important factor in the incidence of infections in transplant recipient. Few studies are available on the management of immunosuppression (IS) treatment in the liver transplant (LT) recipients complicated with infection. The aim of this study is to describe our experience in the management of IS treatment during bacterial bloodstream infection (BSI) in LT recipients and assess the effect of temporary IS withdrawal on 30 d mortality of recipients presenting with severe infection.
View Article and Find Full Text PDFMammalian mitochondrial inner membrane fusion is mediated by optic atrophy 1 (OPA1). Under physiological conditions, OPA1 undergoes proteolytic processing to form a membrane-anchored long isoform (L-OPA1) and a soluble short isoform (S-OPA1). A combination of L-OPA1 and S-OPA1 is essential for efficient membrane fusion; however, the relevant mechanism is not well understood.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2020
Respiratory chain complexes convert energy by coupling electron flow to transmembrane proton translocation. Owing to a lack of atomic structures of cytochrome bc complex (Complex III) from thermophilic bacteria, little is known about the adaptations of this macromolecular machine to hyperthermophilic environments. In this study, we purified the cytochrome bc complex of Aquifex aeolicus, one of the most extreme thermophilic bacteria known, and determined its structure with and without an inhibitor at 3.
View Article and Find Full Text PDFIntroduction: Tigecycline (TGC) is effective for the infections caused by carbapenem-resistant gram-negative bacteria (CRGNB) in adults, but it is not investigated systematically in children because of concern about adverse effects. This study aimed to analyze the effectiveness of TGC in treating CRGNB infections in children after receiving liver transplant.
Methods: The subjects in this retrospective study were pediatric liver transplant recipients treated with TGC for at least 3 days to fight microbiologically verified CRGNB infection after initial antibiotic failure during the period from January 2014 to May 2018.
Ann Transl Med
August 2019
Tiopronin (TP), a glycine derivative with a free thiol, is extensively used for the treatment of cystinuria. Moreover, TP is usually prescribed as hepatoprotective medicine in China. In the present case, a 36-year-old female who presented with foamy urine and general edema was admitted to the hospital.
View Article and Find Full Text PDFPLoS Comput Biol
July 2019
Studies on the Bin-Amphiphysin-Rvs (BAR) domain have advanced a fundamental understanding of how proteins deform membrane. We previously showed that a BAR domain in tandem with a Pleckstrin Homology (PH domain) underlies the assembly of ACAP1 (Arfgap with Coil-coil, Ankryin repeat, and PH domain I) into an unusual lattice structure that also uncovers a new paradigm for how a BAR protein deforms membrane. Here, we initially pursued computation-based refinement of the ACAP1 lattice to identify its critical protein contacts.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1371/journal.pone.
View Article and Find Full Text PDFMitochondrial fission is facilitated by dynamin-related protein Drp1 and a variety of its receptors. However, the molecular mechanism of how Drp1 is recruited to the mitochondrial surface by receptors MiD49 and MiD51 remains elusive. Here, we showed that the interaction between Drp1 and MiD51 is regulated by GTP binding and depends on the polymerization of Drp1.
View Article and Find Full Text PDFBacterial primase initiates the repeated synthesis of short RNA primers that are extended by DNA polymerase to synthesize Okazaki fragments on the lagging strand at replication forks. It remains unclear how the enzyme recognizes specific initiation sites. In this study, the DnaG primase from Bacillus subtilis (BsuDnaG) was characterized and the crystal structure of the RNA polymerase domain (RPD) was determined.
View Article and Find Full Text PDFStudies on coat protein I (COPI) have contributed to a basic understanding of how coat proteins generate vesicles to initiate intracellular transport. The core component of the COPI complex is coatomer, which is a multimeric complex that needs to be recruited from the cytosol to membrane in order to function in membrane bending and cargo sorting. Previous structural studies on the clathrin adaptors have found that membrane recruitment induces a large conformational change in promoting their role in cargo sorting.
View Article and Find Full Text PDFBackground: Bacterial surface display technique enables the exogenous proteins or polypeptides displayed on the bacterial surface, while maintaining their relatively independent spatial structures and biological activities. The technique makes recombinant bacteria possess the expectant functions, subsequently, directly used for many applications. Many proteins could be used to achieve bacterial surface display, among them, autotransporter, a member of the type V secretion system of gram-negative bacteria, has been extensively studied because of its modular structure and apparent simplicity.
View Article and Find Full Text PDFThe BAR (Bin-Amphiphysin-Rvs) domain undergoes dimerization to produce a curved protein structure, which superimposes onto membrane through electrostatic interactions to sense and impart membrane curvature. In some cases, a BAR domain also possesses an amphipathic helix that inserts into the membrane to induce curvature. ACAP1 (Arfgap with Coil coil, Ankyrin repeat, and PH domain protein 1) contains a BAR domain.
View Article and Find Full Text PDFNat Commun
March 2014
Phosphatidylinositol 4-kinase IIα (PI4KIIα), a membrane-associated PI kinase, plays a central role in cell signalling and trafficking. Its kinase activity critically depends on palmitoylation of its cysteine-rich motif (-CCPCC-) and is modulated by the membrane environment. Lack of atomic structure impairs our understanding of the mechanism regulating kinase activity.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2013
Cellular respiration is the process that releases energy from food and supplies energy for life processes. The mitochondrial respiratory chain is the final and most important step for cellular respiration and is located on the inner membrane of mitochondrion and comprises four large trans-membrane protein complexes (respiratory chain Complexes I, II, III and IV) as well as ubiquinone between Complexes I/II and III and cytochrome c between Complexes III and IV. The function of mitochondrial respiratory chain is biological oxidation by transferring electrons from NADH and succinate to oxygen and then generating proton gradient across the inner membrane.
View Article and Find Full Text PDFGroup II chaperonins, which assemble as double-ring complexes, assist in the refolding of nascent peptides or denatured proteins in an ATP-dependent manner. The molecular mechanism of group II chaperonin assembly and thermal stability is yet to be elucidated. Here, we selected the group II chaperonins (cpn-α and cpn-β), also called thermosomes, from Acidianus tengchongensis and investigated their assembly and thermal stability.
View Article and Find Full Text PDFCoat complexes sort protein cargoes into vesicular transport pathways. An emerging class of coat components has been the GTPase-activating proteins (GAPs) that act on the ADP-ribosylation factor (ARF) family of small GTPases. ACAP1 (ArfGAP with coiled-coil, ankyrin repeat, and PH domains protein 1) is an ARF6 GAP that also acts as a key component of a recently defined clathrin complex for endocytic recycling.
View Article and Find Full Text PDFThe mitochondrial respiratory complex II or succinate: ubiquinone oxidoreductase (SQR) is a key membrane complex in both the tricarboxylic acid cycle and aerobic respiration. Five disinfectant compounds were investigated with their potent inhibition effects on the ubiquinone reduction activity of the porcine mitochondrial SQR by enzymatic assay and crystallography. Crystal structure of the SQR bound with thiabendazole (TBZ) reveals a different inhibitor-binding feature at the ubiquinone binding site where a water molecule plays an important role.
View Article and Find Full Text PDF