Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.

Curr Opin Struct Biol

National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

Published: August 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellular respiration is the process that releases energy from food and supplies energy for life processes. The mitochondrial respiratory chain is the final and most important step for cellular respiration and is located on the inner membrane of mitochondrion and comprises four large trans-membrane protein complexes (respiratory chain Complexes I, II, III and IV) as well as ubiquinone between Complexes I/II and III and cytochrome c between Complexes III and IV. The function of mitochondrial respiratory chain is biological oxidation by transferring electrons from NADH and succinate to oxygen and then generating proton gradient across the inner membrane. Such proton gradient is utilized by ATP synthase (ATPase, also called as Complex V) to produce energy molecules ATP. Structural studies of mitochondrial respiratory membrane protein complexes are important to understand the mechanism of electron transfer and the redox-coupled proton translocation across the inner membrane. Here, according to the time line, we reviewed the great achievements on structural studies of mitochondrial respiratory complexes in the past twenty years as well as the recent research progresses on the structures of mitochondrial respiratory supra-complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2013.06.013DOI Listing

Publication Analysis

Top Keywords

mitochondrial respiratory
24
respiratory chain
16
inner membrane
12
electron transfer
8
cellular respiration
8
protein complexes
8
complexes iii
8
proton gradient
8
structural studies
8
studies mitochondrial
8

Similar Publications

In Brief: Advanced maternal age (AMA) is associated with adverse pregnancy outcomes, particularly those associated with placental dysfunction. This study showed that in a mouse model of AMA, male but not female fetuses had increased placental apoptosis and lipid peroxidation, as well as increased mitochondrial content, suggesting that the placentas of male fetuses in AMA mothers adapt to be able to deliver sufficient energy to the fetus.

Abstract: Although advanced maternal age (AMA) increases the risk of fetal growth restriction (FGR) and stillbirth, the mechanisms leading to the placental dysfunction observed in AMA are unknown.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT), leveraging Fenton reactions to generate hydroxyl radicals (•OH) from intracellular hydrogen peroxide (HO), offers a promising cancer treatment strategy due to its high specificity and low systemic toxicity. However, the targeted delivery of •OH-producing prodrugs using covalent organic frameworks (COFs) remains a significant challenge. Here, we report a mitochondria-targeted COF-based nano prodrug, COF-31@P, designed for enhanced CDT efficacy.

View Article and Find Full Text PDF

Background And Purpose: Ciprofol, a novel intravenous anesthetic, has been shown to exert protective effects against ischemic stroke, a leading cause of death and disability; however, its molecular mechanisms remain unclear. This study aimed to explore the molecular mechanisms underlying the neuroprotective effects of ciprofol using metabolomics.

Methods: This study used a middle cerebral artery occlusion (MCAO) rat model to simulate cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Acute profound lactic alkalosis associated with compound heterozygosity in a previously healthy 6-year-old female.

Mol Genet Metab Rep

December 2025

Pediatric Critical Care Medicine, Department of Pediatrics NewYork-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY, United States of America.

encodes NADH: ubiquinone oxidoreductase core subunit V1, a key component of mitochondrial Complex 1. Biallelic pathogenic variants in this gene produce a broad and variable phenotypic spectrum in affected individuals, including ophthalmoplegia, developmental delays, brain imaging abnormalities, and recurrent episodes of emesis and lactic acidemia. We report female siblings compound heterozygous for two missense variants (Arg40Gln, Val245Met) in with unusual presentations of this condition.

View Article and Find Full Text PDF

Background: Imeglimin (Ime), the first in a novel class of antidiabetic agents, has potential therapeutic effects on diabetic peripheral neuropathy (DPN). This study aimed to evaluate and compare the effects on cellular metabolic function and reactive oxygen species (ROS) levels in high glucose-treated mouse Schwann cells (SCs), an DPN model, with those of metformin (Met), a conventional antidiabetic agent known for its beneficial effects on DPN. The roles of PPARα and fatty acid-binding proteins 5 and 7 (FABP5 and FABP7), both of which have been implicated in the pathogenesis of DPN, were also investigated.

View Article and Find Full Text PDF