Colloids Surf B Biointerfaces
August 2025
Titanium (Ti) and Ti alloy are the most widely used implant metals, but the limited bioactivity hinders the further clinical application. Aiming to enhance their osteogenesis, dual biomimetic strategies were utilized to decorate the surface of Ti by topological and biochemical cues. Firstly, a series of concentric circles with TiO nanotubes on Ti were fabricated by photolithography and anodic oxidation.
View Article and Find Full Text PDFRecombinant human leukocyte antigen class II histocompatibility antigen (HLA-DRA) has been implicated in the development of various cancers, but its specific role in clear cell renal cell carcinoma (ccRCC) remains unclear.Tissue samples and clinicopathological data from 78 ccRCC patients were collected. Immunohistochemical staining and H-Score analysis were performed to evaluate HLA-DRA expression and its association with clinicopathological features and prognosis.
View Article and Find Full Text PDFDeveloping functional vascular networks in engineered tissues is crucial for regenerative medicine. Recently, thixotropic hydrogel has emerged as a promising approach due to their 3D-printability and force-responsive dynamics. However, their gel-sol transitions under physiological loading and subsequent mechanoregulation mechanism on vascularization remains inadequately explored.
View Article and Find Full Text PDFFacial nerve injury (FNI), hindered by hypoxic microenvironments limiting Schwann cell (SCs) repair potential, remains a therapeutic challenge. We developed light-responsive Chlorella hydrogels (C-Gel) to modulate oxygen release and inflammation. In vitro, light-activated C-Gel enhanced RSC96 SC proliferation, migration, and secretion while reducing reactive oxygen species (ROS), hypoxia-inducible factor-1α (HIF-1α), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6).
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a common chronic autoimmune condition accompanied by lubrication dysfunction, inflammatory infiltration, and cartilage wear. Long-term improvements in joint lubrication, inflammation elimination, and worn cartilage repair are crucial for effective RA treatment. Herein, we present an injectable bioadhesive and lubricating hydrogel containing a dopamine-modified hyaluronic acid (DA-HA) network, sulfonated hyaluronic acid (SO-HA) network, and kartogenin (KGN)-grafted dopamine-hybridized graphene quantum dot-supported Cu single-atom nanozyme (DAGQD@Cu@KGN SAN) designed to restore cartilage lubrication and repair worn cartilage in RA.
View Article and Find Full Text PDFBiosens Bioelectron
April 2025
Monitoring cardiac rhythm is crucial for diagnosis of heart failure. However, the deficient sensitivity of polyvinylidene fluoride (PVDF) sensors impede their application in monitoring of cardiac rhythm due to the limited piezoelectricity. Here, doping of CoFeO and aligning fibers were jointly adopted to enhance the piezoelectricity of PVDF, attributed to the transformation of α-PVDF to β-PVDF from 51.
View Article and Find Full Text PDFWith the advancement of nanotechnology, various types of nanomaterials have been integrated into electrochemical immunoelectrodes to enhance their performance. Among these, MXene stands out as a promising candidate due to its high electron transfer capacity and abundant surface chemical groups. However, the improvement in electrode performance is often hindered by the self-restacking and agglomeration of MXene.
View Article and Find Full Text PDFBackground: Inspired by natural bones, many organic components were added to Calcium Phosphate Cements (CPCs) to improve their mechanical strength. However, the strength of these composite CPCs is limited by the low strength of organic components itself and the weak interaction between organic components and CPCs.
Objective: Firstly, a composite CPC containing mussel-inspired adhesive, Poly-(Dopamine Methacrylamide-co-2-methoxy Ethylacrylate) (pDM) was developed.
Three-dimensional (3D) bioprinting is evolving into a promising technology by spatially controlling the distribution of living cells for the biomedical field. However, maintaining high printability while protecting cells from damage due to shear stress remains the key challenge for extrusion-based 3D bioprinting. Herein, we developed a novel "protein-polyphenol-polysaccharide" extrusion-based bioink named Gel-TA-Alg@Ca using gelatin (Gel), tannic acid (TA) and sodium alginate (Alg) with quantitative thixotropy by pre-crosslinking with a series of low concentrations of CaCl at 0.
View Article and Find Full Text PDFWear particles of ultra-high molecular weight polyethylene (UHMWPE) are inevitable during service as joint prosthesis, and particles ≤ 10 μm with critical size could cause serious osteolysis and aseptic loosening of joint prosthesis. The aim of this study is to adopt the alginate-encapsulated cell reactor to investigate the molecular impact of critical-sized wear particles of UHMWPE loaded with alendronate sodium (UHMWPE-ALN) on cells. Results showed that compared with UHMWPE wear particles, UHMWPE-ALN wear particles inhibited the proliferation of macrophages significantly after being co-cultured for 1, 4, 7, and 14 d.
View Article and Find Full Text PDFWild type (WT) animals cannot be used to objectively assess the immunogenicity of animal tissue-derived biomaterials when used as recipients due to difference with human in α-Gal expression. The purpose of this study is to compare the differences of immunological responses between the GGTA1 gene-knockout (GTKO) rabbits and WT rabbits after implantation with animal tissue-derived biomaterials. The porcine-derived decellularized bone matrix (natural bone material, NBM) and fresh porcine cancellous bone (PCB) were implanted in GTKO rabbits and WT rabbits, respectively, and sham operation was used as control (Con).
View Article and Find Full Text PDFMacroporous characteristics have been shown to play a key role in the osteoinductivity of hydroxyapatite ceramics, but the physics underlying the new bone formation and distribution in such scaffolds still remain elusive. The work here has emphasized the osteoinductive capacity of porous hydroxyapatite scaffolds containing different macroporous sizes (200-400 μm, 1200-1500 μm) and geometries (star shape, spherical shape). The assumption is that both the size and shape of a macropore structure may affect the microfluidic pathways in the scaffolds, which results in the different bone formations and distribution.
View Article and Find Full Text PDFBMC Genom Data
July 2022
Background: Previous studies have identified the carbohydrate epitope Galα1-3Galβ1-4GlcNAc-R (termed the α-galactosyl epitope), known as the α-Gal antigen as the primary xenoantigen recognized by the human immune system. The α-Gal antigen is regulated by galactosyltransferase (GGTA1), and α-Gal antigen-deficient mice have been widely used in xenoimmunological studies, as well as for the immunogenic risk evaluation of animal-derived medical devices. The objective of this study was to develop α-Gal antigen-deficient rabbits by GGTA1 gene editing with the CRISPR/Cas9 system.
View Article and Find Full Text PDFOsteochondral defects include the damage of cartilage and subchondral bone, which are still clinical challenges. The general replacements are difficult to simultaneously repair cartilage and subchondral bone due to their various requirements. Moreover, appropriate printable bioactive materials were needed for 3D bioprinting personalized scaffolds for osteochondral repairing.
View Article and Find Full Text PDFBiomed Res Int
April 2022
Objective: In this study, -Gal epitope-deficient (GGTA1 knockout (GTKO)) mice were used to assess the immunological risks of xenogeneic dural patch by comparing with raw material.
Methods: The xenogeneic dural patch (T2) was prepared from bovine pericardium (T1, raw material) through decellularization and carboxymethyl chitosan (CMCS) coating. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to characterize the collagen fibers and surface microstructural changes in the T1 and T2 samples.
Front Bioeng Biotechnol
July 2021
Immunotherapy has emerged as a promising strategy for cancer treatment, in which durable immune responses were generated in patients with malignant tumors. In the past decade, biomaterials have played vital roles as smart drug delivery systems for cancer immunotherapy to achieve both enhanced therapeutic benefits and reduced side effects. Hydrogels as one of the most biocompatible and versatile biomaterials have been widely applied in localized drug delivery systems due to their unique properties, such as loadable, implantable, injectable, degradable and stimulus responsible.
View Article and Find Full Text PDFSodium alginate-based hydrogel was the one of the most used polymers for cell delivery. However, the adsorption of extracellular matrix and proteins was inhibited due to the formation of a hydrated surface layer of these hydrogels. In this study, a novel cell delivery system, negatively-charged alginate and chondroitin sulfate microsphere hydrogel (nCACSMH), was fabricated with excellent permeability and biocompatibility in the action of a high voltage direct-current electric field.
View Article and Find Full Text PDFFront Microbiol
May 2020
Porcine epidemic diarrhea virus (PEDV) is an economically important pathogen that has evolved several mechanisms to evade type I IFN responses. Type III interferon (IFN-λ), an innate cytokine that primarily targets the mucosal epithelia, is critical in fighting mucosal infection in the host and has been reported to potently inhibit PEDV infection . However, how PEDV escapes IFN-λ antiviral response remains unclear.
View Article and Find Full Text PDF3D Bioprinting is expected to become a strong tool for regenerative medicine, but satisfactory bioinks for the printing of constructs containing living cells are lacking due to the rigorous requirement of high printability and biocompatibility, which are often contradictory. Here, we have reported the development of a novel hybrid bioink by combining rigid gellan gum (GG), flexible sodium alginate (SA), and a bioactive substance thixotropic magnesium phosphate-based gel (TMP-BG). The ratio of these components was first optimized to obtain satisfactory gelating, mechanical, rheological, and printing properties.
View Article and Find Full Text PDFThe bone defects caused by trauma and disease have become a major difficulty in the treatment of clinical bone defects, and bone tissue engineering has become a promising treatment strategy. It was found that mechanical stimulation regulated the development of bone constructs by affecting the distribution and differentiation of cells on them. In this study, tissue-engineered bone grafts with enhanced bioactivity and self-adaptability were constructed by BMSCs and biphasic calcium phosphate (BCP) scaffolds under periodic micro-vibration stimulation (MVS) with a frequency of 40 Hz and a magnitude of 0.
View Article and Find Full Text PDFTo develop a precise and convenient method to evaluate the virus transmission risk of biologically sourced materials, an integrated cell culture-qPCR (ICC-qPCR) method for Pseudorabies virus (PRV) was established and revised for applications to this new field. The optimized post-infection period was found at 12-hr to achieve a reasonable detection limit (-0.25 LogTCID/100 μL, Logs) and a quantitative range (0.
View Article and Find Full Text PDFBiotechnol Bioeng
August 2019
Virus inactivation validation studies have been widely applied in the risk assessment of biogenic material-based medical products, such as biological products, animal tissue-derived biomaterials, and allogeneic biomaterials, to decrease the risk of virus transmission. Traditional virus detection methods in an inactivation validation study utilize cell culture as a tool to quantify the infectious virus by observing cytopathic effects (CPEs) after virus inactivation. However, this is susceptible to subjective factors because CPEs must be observed by experts under a microscope during virus titration.
View Article and Find Full Text PDFThe emergence of 3D bioprinting is expected to solve the present puzzle in the field of regenerative medicine. However, the appropriate bioink was lacking due to the rigorous requirement of high printability and biocompatibility, which was often contradictory. In this study, a novel thixotropic magnesium phosphate-based gel (TMP-BG) was prepared and its application in 3D printing was explored.
View Article and Find Full Text PDFZhongguo Yi Liao Qi Xie Za Zhi
May 2018
Calcium phosphate cement (CPC) is well known for the excellent bioactivity and biocompatibility, however, CPC has been used only for the repair of non-load bearing bone defects due to its brittle nature and low flexural strength. Polymer reinforced CPC has been considered as one of the most effective strategies for mechanical reinforcement. This paper summarizes various kinds of polymers loaded CPC:fiber reinforcement, microsphere reinforcement and dual setting cements.
View Article and Find Full Text PDFACS Biomater Sci Eng
May 2018
The goal of this study is to investigate the biological response of mussel-inspired calcium phosphate cement (CPC) in vivo. Polydopamine (PDA), which is analogous to that of mussel adhesive proteins, was added in CPC. PDA-CPC was implanted into the femur, muscle, and critical-sized calvarial bone defects of rabbits.
View Article and Find Full Text PDF