Publications by authors named "Meicheng Li"

The perovskite defect evolution directly impacts the efficiency and stability of perovskite solar cells (PSCs). In this work, the mutual promotion mechanism of adjacent cation and anion vacancies in perovskite is unveiled, which means the cation/anion vacancy induces the adjacent anion/cation vacancy through decreasing the formation energy. This mutual promotion mechanism provides an explanation for the dynamic evolution of defects, and emphasizes the necessity of simultaneously passivating of adjacent defects.

View Article and Find Full Text PDF

Single-atom materials (SAMs) are a fascinating class of nanomaterials with exceptional catalytic properties, offering immense potential for energy storage and conversion. This work explores their advantages, challenges, and underlying mechanisms, providing valuable insights for rational design. By precisely controlling active sites, SAMs enable efficient charge and energy transfer, ultimately enhancing system performance.

View Article and Find Full Text PDF

The migration of multiple chemical species is are main factor leading to the intrinsic instability of perovskite solar cells (PSCs). Herein, a universal ion migration suppression strategy is innovatively reported to stabilize multiple functional layers by simultaneously suppressing the migration of multiple mobile chemical species based on host-guest interaction via calixarene supramolecules. After incorporating 4-tert-butylcalix[8]arene (C8A), the interfacial defects are passivated, suppressing trap-assisted nonradiative recombination.

View Article and Find Full Text PDF

Semen cryopreservation is a crucial technology in the artificial insemination of livestock and poultry. It not only contributes to the conservation of germplasm resources but also facilitates the cross-regional exchange of high-quality breeding stock. In this study, 165 Duroc boars were selected for genome-wide genotyping, and the sperm freezing/thawing motility ratio (sperm recovery rate) was used as phenotypic data for genome-wide association analysis (GWAS).

View Article and Find Full Text PDF

Cryopreservation of boar semen is widely applied in the conservation of genetic resources and animal breeding to enhance the utilization efficiency of superior boars. However, accurately identifying individuals with good freezing tolerance in boar sperm remains challenging. In this study, based on the differences in sperm motility before and after cryopreservation from 328 boars, we selected six boars each from the Duroc, Landrace, and Large White breeds, and categorized them into poor freezability ejaculates (PFE) and good freezability ejaculates (GFE) groups for sperm metabolomic analysis.

View Article and Find Full Text PDF

Heteronanocrystals (HNCs) composed of colloidal lead halide perovskites and chalcogenides always offer unique photoelectric properties. Nevertheless, synthesizing perovskite-chalcogenide HNCs has been a tough challenge due to their completely different growth dynamics. Here, we present an effective strategy to synthesize Janus CsPbBr-AgBiS HNCs by in situ growth of CsPbBr NCs on prepared AgBiS quantum dot (QDs).

View Article and Find Full Text PDF

Planar perovskite solar cells (PSCs) show huge promise as an efficient photovoltaic technology, where the inefficient carrier transport at the hetero-interface largely limits their performance advancement. Herein, bifacial surface potential regulation is realized in a monolithic perovskite film through interface doping, leading to optimized dual-interfacial energy level alignment. In a n-i-p planar device, the up-shift of Fermi level on the perovskite bottom surface is first achieved through bottom-up diffusion of Li.

View Article and Find Full Text PDF

Incorporating chlorine into the SnO electron transport layer (ETL) has proven effective in enhancing the interfacial contact between SnO and perovskite in perovskite solar cells (PSCs). However, previous studies have primarily focused on the role of chlorine in passivating surface trap defects in SnO, without considering its influence on the buried interface. Here, hydrochloric acid (HCl) is introduced as a chlorine source into commercial SnO to form Cl-capped SnO (Cl-SnO) ETL, aiming to optimize the buried interface of the PSC.

View Article and Find Full Text PDF
Article Synopsis
  • Ion migration affects the photoelectric performance and stability of perovskite solar cells, but most studies have primarily focused on limiting migration through chemical methods rather than understanding it under real-world conditions.
  • A novel technique, variable-load transient photoelectric (VL-TPT), reveals that ion accumulation is linked to the concentration of photogenerated carriers in open-circuit situations, and that this accumulation decreases when the load is reduced during operation.
  • The study finds that incorporating formamidinium (FA) in MAFAPbI devices reduces ion migration in open-circuit states but increases interface ion buildup during operation, offering insights for improving the stability and functionality of solar cells.
View Article and Find Full Text PDF

The migration and diffusion of Li, I and Ag impedes the realization of long-term operationally stable perovskite solar cells (PSCs). Herein, we report a multifunctional and universal molecular complexation strategy to simultaneously stabilize hole transport layer (HTL), perovskite layer and Ag electrode by the suppression of Li, I and Ag migration via directly incorporating bis(2,4,6-trichlorophenyl) oxalate (TCPO) into HTL. Meanwhile, TCPO co-doping results in enhanced hole mobility of HTL, advantageous energy band alignment and mitigated interfacial defects, thereby leading to facilitated hole extraction and minimized nonradiative recombination losses.

View Article and Find Full Text PDF

Surface passivation is a vital approach to improve the photovoltaic performance of perovskite solar cells (PSCs), in which the passivator solvent is an inevitable but easy-ignored factor on passivation effects. Herein, a universal ternary solvent system of surface passivators is proposed through comprehensively considering the solubility and selective perovskite dissolution of the solvent to maximize the passivation effect. Tetrahydrothiophene 1-oxide (THTO) is selected as the passivation promoter by comparing the binding energy with perovskite and the ability to distort the perovskite lattice among various aprotic polar solvent molecules, which can facilitate the passivator's reaction with perovskite and achieve sufficient passivation on perovskite surface.

View Article and Find Full Text PDF
Article Synopsis
  • Perovskite light-emitting diodes (PeLEDs) are gaining popularity due to their ability to be easily tuned and their color stability, with significant advancements in red and green PeLEDs, but blue PeLEDs are still underdeveloped.
  • The study introduces efficient sky-blue PeLEDs by creating a CsPbBr plates/quasi-2D perovskite heterojunction, optimizing the crystallization process using chelating molecules.
  • The results show a maximum brightness of 2311 cd/m² and an external quantum efficiency of 12.86% at 487 nm, highlighting the potential of CsPbBr/perovskite heterojunctions to improve PeLED performance and push the
View Article and Find Full Text PDF

Ion migration is a major issue hindering the long-term stability of perovskite solar cells (PSCs). As an intrinsic characteristic of metal halide perovskite materials, ion migration is closely related to the atomic arrangement and coordination, which are the basic characteristic differences among various facets. Herein, we report the facet-related ion migration, and then achieve the inhibition of ion migration in perovskite through finely modulating the facet orientation.

View Article and Find Full Text PDF

Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present.

View Article and Find Full Text PDF

Background: Myocardial iron overload can lead to myocardial dysfunction, muscle cell injury, and end-stage heart failure. The enhanced signal-to-noise ratio and technical advancements have made 3 T magnetic resonance imaging (MRI) more accessible in clinical settings. However, 3 T assessments for early diagnosis of myocardial iron overload are scarce.

View Article and Find Full Text PDF

Integrated electrochromic devices powered by photovoltaic cells have evoked a lot of interest due to their promising commercial prospects. However, their application has been restricted by the voltage adaption between the self-powered voltage and the color-changing threshold voltage (V). Herein, a strategy of bidirectional voltage regulating is proposed to develop a novel stand-alone integrated photovoltachromic device (I-PVCD), which integrates perovskite/organic tandem solar cells (P/O-TSCs) to drive color-changing process of conjugated poly(3-hexylthiophene) (P3HT) films.

View Article and Find Full Text PDF

As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system.

View Article and Find Full Text PDF

The commercialization of perovskite solar cells is badly limited by stability, an issue determined mainly by perovskite. Herein, inspired by a natural creeper that can cover the walls through suckers, we adopt polyhexamethyleneguanidine hydrochloride as a molecular creeper on perovskite to inhibit its decomposition starting from the annealing process. The molecule possesses a long-line molecular structure where the guanidinium groups can serve as suckers that strongly anchor cations through multiple hydrogen bonds.

View Article and Find Full Text PDF

Obstruction is inevitable and will significantly impact the actual output performance of photovoltaic modules, even jeopardize their operational safety. We introduced a layer of bubbles into photovoltaic glass. These bubbles can alter the path of incident light, while the internal reflection at the glass/air interface enables the redirected light rays to have longer lateral propagation distance, circumventing the obstructions.

View Article and Find Full Text PDF

The open circuit voltage (V) losses at multiple interfaces within perovskite solar cells (PSCs) limit the improvements in power conversion efficiency (PCE). Herein, a tailored strategy is proposed to reduce the energy offset at both hetero-interfaces within PSCs to decrease the V losses. For the interface of perovskite and electron transport layer where exists a mass of defects, it uses the pyromellitic acid to serve as a molecular bridge, which reduces non-radiative recombination and energy level offset.

View Article and Find Full Text PDF

The doped organic hole transport layer (HTL) is crucial for achieving high-efficiency perovskite solar cells (PSCs). However, the traditional doping strategy undergoes a time-consuming and environment-dependent oxidation process, which hinders the technology upgrades and commercialization of PSCs. Here, we reported a new strategy by introducing a cascade reaction in traditional doped Spiro-OMeTAD, which can simultaneously achieve rapid oxidation and overcome the erosion of perovskite by 4-tert-butylpyridine (tBP) in organic HTL.

View Article and Find Full Text PDF

Perovskite p-n homojunctions (PHJ) have been confirmed to play a crucial role in facilitating carrier separation/extraction in the perovskite absorption layer and provide an additional built-in potential, which benefits the inhibition of carrier recombination in perovskite solar cells (PSCs) and ultimately improves device performance. However, the diffusion and migration of ions between n-type and p-type perovskite films, particularly under operational and heating conditions, lead to the degradation of PHJ structures and limit the long-term stability of PSCs with PHJ structure (denoted as PHJ-PSCs). In this study, we propose an insert layer strategy by directly introducing an ultra-thin polyetheramine (PEA) layer between the n-type and p-type perovskite films to address those challenges arising from ion movements.

View Article and Find Full Text PDF

Buried interface optimization matters the efficiency improvement of planar perovskite solar cells (PSCs), and the molecular bridge is reported to be an effective approach. Herein, a molecular bridge is constructed at buried interface using 4-chloro-3-sulfamoylbenzoic acid (CSBA), and its preferred arrangement is systematically investigated. It is elucidated that the CSBA molecular is prone to be orientationally absorbed on TiO surface through COOH-Ti, and then connect with perovskite through S═O-Pb, resulting in a feasible oriented molecular bridge.

View Article and Find Full Text PDF

Upscaling efficient and stable perovskite films is a challenging task in the industrialization of perovskite solar cells partly due to the lack of high-performance hole transport materials (HTMs), which can simultaneously promote hole transport and regulate the quality of perovskite films especially in inverted solar cells. Here, a novel HTM based on N-C = O resonance structure is designed for facilitating the modulation of the crystallization and bottom-surface defects of perovskite films. Benefiting from the resonance interconversion (N-C = O and N = C-O ) in donor-resonance-donor (D-r-D) architecture and interactions with uncoordinated Pb in perovskite, the resulting D-r-D HTM with two donor units exhibits not only excellent hole extraction and transport capacities, but also efficient crystallization modulation of perovskite for high-quality photovoltaic films in large area.

View Article and Find Full Text PDF

Earth-abundant LaFeO is a promising p-type semiconductor for photoelectrochemical cells due to its stable photoresponses, high photovoltages and appropriate band alignments, but the photoelectrochemical properties of LaFeO , especially the incident-photon-to-current conversion efficiency, need to be further improved. Herein, we propose to partially substitute La of LaFeO with Ag to enhance the photoelectrochemical performance of LaFeO . The combined experimental and computational studies show that Ag-substitution improves surface charge transfer kinetics through introducing active electronic states and increasing electrochemically active surface areas.

View Article and Find Full Text PDF