Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The migration of multiple chemical species is are main factor leading to the intrinsic instability of perovskite solar cells (PSCs). Herein, a universal ion migration suppression strategy is innovatively reported to stabilize multiple functional layers by simultaneously suppressing the migration of multiple mobile chemical species based on host-guest interaction via calixarene supramolecules. After incorporating 4-tert-butylcalix[8]arene (C8A), the interfacial defects are passivated, suppressing trap-assisted nonradiative recombination. Moreover, the p-doping of Spiro-OMeTAD is facilitated, and the extraction and transport of holes are promoted for n-i-p regular PSCs. The C8A doped regular devices based on the two-step perovskite deposition method achieve a power conversion efficiency (PCE) of 26.01% (certified 25.68%), which is the record PCE ever reported for the TiO-based planar PSCs. The C8A passivated p-i-n inverted PSCs obtain a champion PCE of 27.18% (certified 26.79%), which is the highest PCE for the PSCs using the vacuum flash evaporation method. The resulting unsealed inverted device retains 95% of its initial PCE after 1015 h of continuous operation at maximum power point. This work provides a feasible and effective avenue to address the intrinsic instability of perovskite-based photovoltaics and other optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202505115DOI Listing

Publication Analysis

Top Keywords

universal ion
8
ion migration
8
migration suppression
8
suppression strategy
8
host-guest interaction
8
perovskite solar
8
solar cells
8
migration multiple
8
chemical species
8
intrinsic instability
8

Similar Publications

Objectives: This study aimed to evaluate the whitening effect, shear bond strength (SBS), microhardness, and microstructure of discolored resin brackets following whitening treatment with various concentrations of hydrogen peroxide (HP).

Material And Methods: Resin brackets were bonded to the enamel surface and discolored with a curry solution. Control (distilled water; DW) and experimental solutions of 8.

View Article and Find Full Text PDF

This study introduces the HydroTherm-Flow Smart Window (HTF Window), the first groundbreaking integration of thermochromic windows and Fe-Cr redox flow batteries (Fe-Cr RFBs), achieving dual functionalities of dynamic solar modulation-via dual-band (visible + near-infrared, NIR) modulation-and high-efficiency energy storage in a single component. Leveraging tunable hydroxypropyl cellulose (HPC) hydrogels, it enables ultrafast optical switching and autonomous nighttime opacity, overcoming the slow response and privacy limitations of conventional thermochromic systems. By repurposing the window as a compact electrolyte reservoir, it reduces the RFB spatial footprint while enhancing ionic conductivity by 30% via hydrogel "ion highways," achieving 77% energy efficiency with a 40% reduction in the solar heat gain coefficient.

View Article and Find Full Text PDF

Ribosomal RNA (rRNA) modifications are important for ribosome function and can influence bacterial susceptibility to ribosome-targeting antibiotics. The universally conserved 16S rRNA nucleotide C1402, for example, is the only 2'- -methylated nucleotide in the bacterial small (30S) ribosomal subunit and this modification fine tunes the shape and structure of the peptidyl tRNA binding site. The Cm1402 modification is incorporated by the conserved bacterial 16S rRNA methyltransferase RsmI, but it is unclear how RsmI is able to recognize its 30S substrate and specifically modify its buried target nucleotide.

View Article and Find Full Text PDF

Amino acid (AA)-based nanoparticles (NPs) hold promise in cancer therapy due to their excellent biocompatibility and the various therapeutic functions derived from AA monomers. Here, we developed a universal one-step method to synthesize AA-based NPs. We then constructed L-Arginine (L-Arg)/calcium phosphate (CaP) NPs to enhance cancer therapy through synergistic calcium overload to induce apoptosis and immunogenic cell death.

View Article and Find Full Text PDF

Counterion-mediated modulation of electroadhesion in polyanionic/polycationic hydrogels: mechanisms and performance.

J Colloid Interface Sci

August 2025

Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China. Electronic address:

Reversible electroadhesive polyelectrolyte gels have emerged as promising materials for flexible electronic and soft robotic applications. While current research predominantly emphasizes polymer design and structural optimization to enhance both the reversibility and strength of electroadhesion, fundamental limitations persist in elucidating ion-mediated interfacial mechanisms. Herein, the synergistic effects of ion species selection and interfacial engineering were systematically investigated through the development of distinct polyelectrolyte hydrogel assemblies.

View Article and Find Full Text PDF