Publications by authors named "Jing-feng Li"

Thermoelectric materials allow direct conversion between heat and electricity and may be useful for power generation or solid-state refrigeration. However, improving thermoelectric performance is challenging because of the strong coupling between the electrical and thermal transport properties. We demonstrate a new super-gravity-field re-melting fabrication technology that synergistically optimizes the thermoelectric performance.

View Article and Find Full Text PDF

Bismuth telluride-based thermoelectric (TE) materials have been commercially applied in near-room temperature refrigeration. However, enhancing their TE performance remains crucial for expanding their application fields. Nanocomposite strategy has been widely reported as an effective approach to improving the TE performance of bismuth telluride-based materials.

View Article and Find Full Text PDF

The focus of this investigation is to explore the effect of cold plasma modification on the stabilization of water-in-oil (W/O) emulsions with highland barley (HB) proteins. It was notable that following cold plasma treatment, the interfacial tension of the HB protein was significantly reduced, and its rearrangement rate increased by 43 %. These changes indicate enhanced interfacial activity of the protein, suggesting improved interaction between the HB protein and the liquid interface.

View Article and Find Full Text PDF

Background: Dauriporphine is a major ingredient of Manispernum daericum DC., which has been demonstrated to show wide anti-tumor activities. miR-424-5p, as a regulator of lung cancer, was hypothesized to serve as the therapeutic target for dauriporphine This study evaluated the potential of dauriporphine in treating lung adenocarcinoma and revealed the underlying molecular mechanism.

View Article and Find Full Text PDF

As a promising thermoelectric material for electronic cooling and power generation, Mg(Sb,Bi) has received extensive attention. Despite efforts to enhance its performance through composite modulation, challenges such as secondary phase refinement, dispersion, and interfacial mismatch, particularly at grain boundaries, remain critical. In this work, by incorporating TiO into the Mg(Sb,Bi)-based matrix, the grain boundary phases are in situ engineered, yielding a superior figure of merit (zT) exceeding 2 at 798 K.

View Article and Find Full Text PDF

Dislocations have increasingly become important for improving the thermoelectric properties of thermoelectric materials due to their more pronounced scattering effect on phonons than on carriers. This study combined the introduction of the dislocation cores through domain engineering with the generation of Mg vacancies (V) by controlling point defects to achieve low lattice thermal conductivity and high power factor in n-type and p-type MgSn single crystals (SCs). The V domain with ordered atomic arrangements allowed carrier transport with minimal scattering, while the high dislocation density at the interface effectively scattered phonons, thereby decoupling carrier-phonon transport.

View Article and Find Full Text PDF

Piezoelectric materials are indispensable in electromechanical actuators, which require a large electrostrain with a fast and precise response. By designing a chemopiezoelectric effect, we developed an approach to achieve a high electrostrain of 1.9% under -3 kV mm, at 1 Hz, corresponding to an effective piezoelectric coefficient of >6,300 pm V at room temperature in lead-free potassium sodium niobate piezoceramics.

View Article and Find Full Text PDF

Dielectric capacitors possessing high power density and ultrashort discharge time are valuable for high-power energy storage applications. However, achieving high energy storage density remains challenging due to the limited breakdown strength of dielectric ceramics. In this study, inspired by the layered architecture of natural nacre and with the guidance of phase-field simulations, a strategy of constructing a nacre-like layered structure is proposed to improve the breakdown strength and energy storage density of the ceramics.

View Article and Find Full Text PDF

(K,Na)NbO-based ceramics are deemed among the most promising lead-free piezoelectric materials, though their overall piezoelectric performance still lags behind the mainstream lead-containing counterparts. Here, we achieve an ultrahigh piezoelectric charge coefficient d ∼ 807 pC·N, along with a high longitudinal electromechanical coupling factor (k ∼ 88%) and Curie temperature (T ∼ 245 °C) in the (K,Na)(NbSb)O-BiNaZrO-BiFeO (KNN-xSb) system through structural flexibility and grain orientation strategies. Phenomenological models, phase field simulations and high-angle annular dark-field scanning transmission electron microscopy reveal that the structural flexibility originates from the high Coulomb force between K/Na ions and Sb ions in the KNN-xSb system, while the grain orientation promotes the displacement of B-site cations leveraging the engineered domain configuration.

View Article and Find Full Text PDF

PbZrO (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm.

View Article and Find Full Text PDF

Thermoelectric technology plays an important role in developing sustainable clean energy and reducing carbon emissions, offering new opportunities to alleviate current energy and environmental crises. Nowadays, GeTe has emerged as a highly promising thermoelectric candidate for mid-temperature applications, due to its remarkable thermoelectric figure of merit () of 2.7.

View Article and Find Full Text PDF

Ferroelectric films are highly sought-after in micro-electro-mechanical systems, particularly with the trend towards miniaturization. However, their tendency to depolarize and degradation in piezoelectric properties when exposed to packaging procedures at temperatures exceeding 260 °C remains a significant challenge. Here, we reveal the prerequisites for self-poling and leverage these insights to achieve unprecedented macroscopic performance through a two-step approach involving texture construction and hierarchical heterogeneity engineering.

View Article and Find Full Text PDF

Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation.

View Article and Find Full Text PDF

Thermoelectric Peltier coolers (PCs) are being increasingly used as temperature stabilizers for optoelectronic devices. Increasing integration drives PC miniaturization, requiring thermoelectric materials with good strength. We demonstrate a simultaneous gain of thermoelectric and mechanical performance in (Bi, Sb)Te, and successfully fabricate micro PCs (2 × 2 mm cross-section) that show excellent maximum cooling temperature difference of 89.

View Article and Find Full Text PDF
Article Synopsis
  • Notable advancements have been made in lead-free piezoceramics, specifically KNN-based materials, focusing on enhancing their piezoelectric properties.
  • The study introduces Li/Sb-codoped KNN ceramics, achieving a high electrostrain of 0.43% and a d* value of 2177 pm/V at 20 kV/cm, while maintaining stability with less than 15% performance loss from room temperature to 150 °C.
  • The improved performance is attributed to defect engineering (A-site vacancy-oxygen vacancy dipoles) and optimized domain structures that enhance strain stability under varying temperatures.
View Article and Find Full Text PDF
Article Synopsis
  • GeTe is a leading p-type thermoelectric material that has shown improved performance for mid-temperature applications through recent advancements.
  • This study demonstrates that adding small amounts of boron to Bi-doped GeTe enhances its power factor while reducing thermal conductivity by creating dislocations that scatter phonons effectively.
  • The resulting GeTe-based composites achieve a record-high figure of merit Z of 4.0 × 10K at 613 K, outperforming many existing thermoelectric systems in similar temperature ranges.
View Article and Find Full Text PDF

Relaxor ferroelectric (RFE) films are promising energy-storage candidates for miniaturizing high-power electronic systems, which is credited to their high energy density () and efficiency. However, advancing their beyond 200 joules per cubic centimeter is challenging, limiting their potential for next-generation energy-storage devices. We implemented a partitioning polar-slush strategy in RFEs to push the boundary of .

View Article and Find Full Text PDF

Recently, the earth-abundant tin sulfide (SnS) has emerged as a promising thermoelectric material due to its phonon and electron structure similar to that of tin selenide (SnSe). However, compared with SnSe, limited progress has been achieved in the thermoelectric property enhancement of SnS. Textured SnS polycrystals with an enhanced thermoelectric performance have been developed in this work.

View Article and Find Full Text PDF
Article Synopsis
  • GeSe shows potential for excellent thermoelectric performance but struggles with doping limitations affecting carrier concentrations.
  • A crystal structure evolution strategy using LiBiTe alloying leads to stable rhombohedral and cubic phases in GeSe, improving its thermoelectric properties.
  • The study achieves a low lattice thermal conductivity and high thermoelectric figure of merit (up to 1.3 at 723 K), outlining an effective method for enhancing GeSe-related material performance.
View Article and Find Full Text PDF

Nanoscale spatially controlled modulation of the properties of ferroelectrics via artificial domain pattering is crucial to their emerging optoelectronics applications. New patterning strategies to achieve high precision and efficiency and to link the resultant domain structures with device functionalities are being sought. Here, we present an epitaxial heterostructure of SrRuO/PbTiO/SrRuO, wherein the domain configuration is delicately determined by the charge screening conditions in the SrRuO layer and the substrate strains.

View Article and Find Full Text PDF

Thermoelectric materials are highly promising for waste heat harvesting. Although thermoelectric materials research has expanded over the years, bismuth telluride-based alloys are still the best for near-room-temperature applications. In this work, a ≈38% enhancement of the average ZT (300-473 K) to 1.

View Article and Find Full Text PDF
Article Synopsis
  • Thermoelectric superionic conductors exhibit a balance between the advantageous ion migration for conductivity and drawbacks like hindered phonon transport and stability issues.
  • Researchers improved the performance in CuSe-based conductors by using ion confinement through cation-anion co-doping, successfully raising the activation energy to limit ion movement.
  • The optimized materials achieved a figure of merit (ZT) of around 3.0 at high temperatures and showed impressive efficiency, maintaining high conversion rates over numerous cycles without significant degradation.
View Article and Find Full Text PDF

Electric field-induced second harmonic generation allows electrically controlling nonlinear light-matter interactions crucial for emerging integrated photonics applications. Despite its wide presence in materials, the figures-of-merit of electric field-induced second harmonic generation are yet to be elevated to enable novel device functionalities. Here, we show that the polar skyrmions, a topological phase spontaneously formed in PbTiO/SrTiO ferroelectric superlattices, exhibit a high comprehensive electric field-induced second harmonic generation performance.

View Article and Find Full Text PDF

Black phosphorus with a superior theoretical capacity (2596 mAh g) and high conductivity is regarded as one of the powerful candidates for lithium-ion battery (LIB) anode materials, whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs. By contrast, the exfoliated two-dimensional phosphorene owns negligible volume variation, and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics, while its positive influence has not been discussed yet. Herein, a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.

View Article and Find Full Text PDF

Mg(Sb,Bi) is a promising thermoelectric material suited for electronic cooling, but there is still room to optimize its low-temperature performance. This work realizes >200% enhancement in room-temperature zT by incorporating metallic inclusions (Nb or Ta) into the Mg(Sb,Bi)-based matrix. The electrical conductivity is boosted in the range of 300-450 K, whereas the corresponding Seebeck coefficients remain unchanged, leading to an exceptionally high room-temperature power factor >30 μW cm K; such an unusual effect originates mainly from the modified interfacial barriers.

View Article and Find Full Text PDF