Ozone (O) is a primary pollutant affecting air quality in China, whose formation rate was non-linearly based on volatile organic compounds (VOCs) and nitrogen oxides (NOx). A comprehensive understanding of the key drivers governing O formation and its sensitivity to precursor variations presents a persistent research challenge, stemming from the complex interplay of underlying photochemistry, meteorology, and topography. To address this knowledge gap, we conducted synchronous measurements of O and its precursors at both an urban (JPU) and a mountain (LM) site in a typical city in eastern China, enabling concurrent evaluation of O formation sensitivity and diagnostic analysis of its underlying mechanisms.
View Article and Find Full Text PDFEnviron Sci Technol
February 2025
High blood lead (Pb) levels have long been a significant environmental issue affecting the health and development of adolescents. However, the main reasons behind this phenomenon, especially the absorption and transportation processes of Pb in the intestine, have not been elucidated, which is the major barrier to reducing blood Pb levels in the human body, especially in adolescents. In this study, we explored the intestinal absorption process of Pb in rats of different ages at environmentally relevant concentrations.
View Article and Find Full Text PDFBlack carbon (BC) is a refractory form of carbonaceous aerosol generated from fossil fuel and biomass incomplete combustion, which has adverse influence on global warming, air pollution, and human health. However, the relative importance of different sources and meteorology on atmospheric BC evolution was not well understood yet, especially during special periods when series of rigorous emission reduction measures were employed. Here, over one-year observation of BC concentration was conducted in urban of Hangzhou, China from Dec.
View Article and Find Full Text PDFChem Biodivers
December 2024
In this experiment, BiSnO/ZnO composite photocatalytic materials were synthesized by a hydrothermal method and characterized by XRD, SEM, and EDS, etc. The prepared BiSnO/ZnO has a nanorod structure and high phase purity. The photocatalytic antimicrobial performance of BiSnO/ZnO against bacteria and fungi under visible light was significantly better than that of single BiSnO and ZnO.
View Article and Find Full Text PDFEnviron Sci Technol
March 2023
As the Third Pole of the world, the Tibetan Plateau (TP) is sensitive to anthropogenic influences. Biomass combustion is one of the most important anthropogenic sources of mercury (Hg) emissions in the TP. However, due to the lack of knowledge about Hg emission characteristics and activity levels in the plateau, atmospheric Hg emissions from biomass combustion in the TP are under large uncertainties.
View Article and Find Full Text PDFMercury pollution has attracted worldwide attention due to its toxicity, bioaccumulation and persistence. Cement clinker production is the top emitter of atmospheric mercury in China and the emissions from raw mill systems account for about 85% of all emissions. However, the mercury emission characteristics and mechanisms as a function of time during an operation cycle are still unclear.
View Article and Find Full Text PDFEnviron Sci Technol
June 2022
Gaseous oxidized mercury (Hg) monitoring is one of the largest challenges in the mercury research field, where existing methods cannot simultaneously satisfy the measurement requirements of both accuracy and time precision, especially in high-particulate environments. Here, we verified that dual-stage cation exchange membrane (CEM) sampler is incapable of gaseous elemental mercury (Hg) uptake even if particulate matter is trapped on CEM, whereas the Hg capture efficiency of the sampler is more than 90%. We then developed a Cation Exchange Membrane-Coupled Speciated Atmospheric Mercury Monitoring System (CSAMS) by coupling the dual-stage CEM sampler with the commercial Tekran 2537/1130/1135 system and configuring a new sampling and analysis procedure, so as to improve the monitoring accuracy of Hg and ensure the simultaneous measurement of Hg, Hg, and Hg in 2 h time resolution.
View Article and Find Full Text PDFBy using the density functional theory (DFT) and time-dependent density functional theory (TDDFT), the electronic structure and photophysical properties of a series of cyclometalated iridium(III) complexes bearing the substituted phenylpyrazole have been theoretically investigated. All studied iridium(III) complexes have the distorted octahedral geometry with cis-C,C, cis-O,O, and trans-N,N chelate disposition. The lowest lying singlet → singlet absorptions of all studied iridium(III) complexes are respectively located at 405 nm, 387 nm, 382 nm, 370 nm, and 387 nm.
View Article and Find Full Text PDFEnviron Sci Technol
October 2021
Coal preparation is effective in controlling primary mercury emissions in coal combustion systems; however, the combustion of coal preparation byproducts may cause secondary emissions. The inconsistent coal preparation statistics, unclear mercury distribution characteristics during coal preparation, and limited information regarding the byproduct utilization pathways lead to great uncertainty in the evaluation of the effect of coal preparation in China. This study elucidated the mercury distribution in coal preparation based on the activity levels of 2886 coal preparation plants, coal mercury content database, tested mercury distribution factors of typical plants, and then traced the mercury flows and emissions in the downstream sectors using a cross-industry mercury flow model.
View Article and Find Full Text PDFEnviron Sci Technol
October 2021
This study developed an up-to-date and point-source-based inventory of mercury (Hg) releases to water in China by applying probabilistic release factors that combined industry removal efficiencies, reuse of reclaimed water, and receiving water types. In 2017, the national mercury release to water was estimated to be 50 (35-66) tons, in which 47%, 8%, 7%, and 25% were from nonferrous metal smelting, vinyl chloride monomer (VCM) production, coal-fired boilers, and domestic sewage, respectively. Approximately 95% of mercury was released to inland rivers, and the rest was discharged to lakes or coastal water.
View Article and Find Full Text PDFSci Total Environ
December 2021
The ultra-low emission retrofitting (ULE) in China's coal-fired power plants (CFPPs) enhances removal efficiencies of trace elements, which may increase their contents in fly ash and gypsum. However, their potential environmental risks in these wastes have been scarcely evaluated. Experiments indicated that the trace elements in fly ash and gypsum accounted for approximately 92.
View Article and Find Full Text PDFSci Total Environ
February 2021
Various hazardous trace elements emitted from anthropogenic activities are attracting increasing public awareness. This study comprehensively explored the distribution and emissions of trace elements in coal-fired power plants (CFPPs) after ultra-low emission retrofitting by conducting field experiments, literature surveys, and model calculations. High levels of volatile Hg and semi-volatile As/Pb were mainly observed in fly ash and gypsum (96.
View Article and Find Full Text PDFSci Total Environ
January 2021
Controlling anthropogenic mercury emissions is an ongoing effort and the effect of atmospheric mercury mitigation is expected to be impacted by accelerating climate change. The lockdown measures to restrict the spread of Coronavirus Disease 2019 (COVID-19) and the following unfavorable meteorology in Beijing provided a natural experiment to examine how air mercury responds to strict control measures when the climate becomes humid and warm. Based on a high-time resolution emission inventory and generalized additive model, we found that air mercury concentration responded almost linearly to the changes in mercury emissions when excluding the impact of other factors.
View Article and Find Full Text PDFWith the implementation of COVID-19 restrictions and consequent improvement in air quality due to the nationwide lockdown, ozone (O) pollution was generally amplified in China. However, the O levels throughout the Guangxi region of South China showed a clear downward trend during the lockdown. To better understand this unusual phenomenon, we investigated the characteristics of conventional pollutants, the influence of meteorological and anthropogenic factors quantified by a multiple linear regression (MLR) model, and the impact of local sources and long-range transport based on a continuous emission monitoring system (CEMS) and the HYSPLIT model.
View Article and Find Full Text PDFCoastal ecosystem is vulnerable to heavy metal contamination. The northern Hangzhou Bay is under intensifying impact of anthropogenic activities. To reveal the heavy metal pollution status in the coastal environment of the Hangzhou Bay, a long-term investigation into the heavy metal contamination during 2011 to 2016 was initiated.
View Article and Find Full Text PDFIn China, the corresponding control directives for volatile organic compounds (VOCs) have been based on primary emissions, rarely considering reactive speciation. To seek more effective VOCs control strategies, we investigated 107 VOC species in a typical coastal city (Beihai) of South China, from August to November 2018. Meanwhile, a high-resolution anthropogenic VOCs monthly emission inventory (EI) was established for 2018.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2020
Iron and steel industry emission is an important industrial source of air pollution. However, little is known about the relationship between volatile organic compounds (VOCs) emitted and regional air pollution. In this study, VOCs emissions from a typical iron and steel plant in Yangtze River Delta (YRD, China) were monitored from April 2018 to March 2019.
View Article and Find Full Text PDFThe electronic structure and photophysical properties of four mixed-carbene tris-cyclometalated iridium(iii) complexes have been theoretically investigated by the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The effect of varying the main ligand by introducing different ring structures on the photophysical properties of the studied complexes has been explored. All studied complexes have slightly distorted octahedral geometries.
View Article and Find Full Text PDFAt the end of 2019, a novel coronavirus, designated as SARS-CoV-2, emerged in Wuhan, China and was identified as the causal pathogen of COVID-19. The epidemic scale of COVID-19 has increased dramatically, with confirmed cases increasing across China and globally. Understanding the potential affecting factors involved in COVID-19 transmission will be of great significance in containing the spread of the epidemic.
View Article and Find Full Text PDFBraz J Microbiol
September 2020
This study aims to develop a rapid bacterial antibiotic susceptibility test (AST) method by Bacteria-aptamer@AgNPs-surface enhanced Raman spectroscopy (SERS) and further evaluate the influence of different antibiotics on the Raman intensity of bacteria. The Raman intensity of Escherichia coli O157:H7 (E. coli O157:H7) and Staphylococcus aureus (S.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2020
Volatile organic compounds (VOCs) are important precursors of ozone and atmospheric particulates that have attracted extensive attention worldwide. Cooking emissions, the chemical characteristics of which vary dramatically due to different cooking styles, are a main source of ambient VOCs, especially in large cities. This research focused on the emission characteristics of VOCs from six types of restaurants in Shanghai: hot pot (HP), Sichuan cuisine (SC), Cantonese cuisine (CS), seafood (SF), Western fast food (WFF), and authentic Shanghai cuisine (ASC).
View Article and Find Full Text PDFPhotochem Photobiol Sci
November 2019
By using density functional theory and time-dependent density functional theory, the geometrical, electronic and photophysical properties of six complexes with two ppy-type ligands and one acetylacetone anion around the Ir center have been explored. The lowest energy absorption wavelengths are located at 414 nm for 1, 434 nm for 2, 434 nm for 3, 421 nm for 4, 436 nm for 5, and 425 nm for 6, respectively. The lowest energy emissions of these complexes are localized at 617, 492, 633, 634, 491 and 491 nm, respectively, for complexes 1-6, simulated in CH2Cl2 medium at the M062X level.
View Article and Find Full Text PDFEnviron Pollut
December 2019
As one of the highest energy consuming and polluting industries, the power generation industry is an important source of particulate matter emissions. Recently, implementation of ultra-low emission technology has changed the emission characteristic of fine particulate matter (PM). In this study, PM emitted from four typical power plants in China was sampled using a dilution channel sampling system, and analyzed for elements, water-soluble ions and carbonaceous fractions.
View Article and Find Full Text PDFTraceability and authenticity is crucial to the food safety of scallop. The present study investigated the possibility of using stable isotope analysis to identify the origins and species of scallops (Patinopecten yessoensis, Chlamys farreri, and Argopecten irradians) in the coastal areas of China. The δC and δN values of a total of 575 samples from seven sites around China were determined and additional 150 samples were tested by fisher linear discrimination analysis (LDA) to estimate the accuracy of origin identification and species prediction.
View Article and Find Full Text PDF