98%
921
2 minutes
20
The electronic structure and photophysical properties of four mixed-carbene tris-cyclometalated iridium(iii) complexes have been theoretically investigated by the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The effect of varying the main ligand by introducing different ring structures on the photophysical properties of the studied complexes has been explored. All studied complexes have slightly distorted octahedral geometries. The complex with a rigid skeletal structural main ligand possesses the smallest difference between the recombination energy of hole transport and recombination energy of electron transport among these complexes, enhancing the charge transfer balance. The lowest energy emission wavelength calculated is in very good agreement with the available experimental value. This study will provide useful information for the design of new phosphorescent organic light-emitting diode (OLED) materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9053717 | PMC |
http://dx.doi.org/10.1039/d0ra03444d | DOI Listing |
J Mater Chem B
September 2025
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti, 85, Bologna 40129, Italy.
Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.
View Article and Find Full Text PDFLangmuir
September 2025
Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
The binary composites of liquid () and crystalline () difluoroboron β-diketonate (BFdbk) complexes exhibited a metastable nature arising from the intricate interplay between their liquid and crystalline components in bulk. Differential scanning calorimetry (DSC) measurements indicate nearly complete miscibility of and when the fractional volume of occupied a substantial portion, corresponding to below 47 mol % of the content. In contrast, polarized optical microscopic (POM) observations unveiled that the / composites between two glass slides crystallized regardless of the content.
View Article and Find Full Text PDFSmall
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline and the accumulation of amyloid-β (Aβ) plaques, with current treatments offering only limited efficacy. Targeted photo-oxygenation of Aβ using small-molecule photosensitizers has emerged as a promising strategy to modulate amyloid aggregation and mitigate associated toxicity. In this work, the rational design and synthesis of donor-engineered, benzimidazole-functionalized aggregation-induced emission (AIE) photosensitizer with optimized photophysical and morphological properties for multimodal theranostic applications in AD is analyzed and reported.
View Article and Find Full Text PDFLuminescence
September 2025
School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, C
A series of 2-substituted 4H-chromen-4-ones 3a-3h containing triphenylamine or N-phenylcarbazole on the benzene ring were synthesized for the first time via the Suzuki coupling reaction. The photophysical properties of the compounds and their relationship to the structure of the compounds were investigated by methods such as spectroscopic analysis, single-crystal analysis, and theoretical calculations. The systematic results indicate that compounds 3a-3h have intramolecular charge transfer (ICT), aggregation-induced emission (AIE), and dual-state emission (DSE) effects with a wide range of fluorescence emission wavelengths (421-618 nm), showing the potential to be developed into a full-color fluorophore.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.
View Article and Find Full Text PDF