Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coastal ecosystem is vulnerable to heavy metal contamination. The northern Hangzhou Bay is under intensifying impact of anthropogenic activities. To reveal the heavy metal pollution status in the coastal environment of the Hangzhou Bay, a long-term investigation into the heavy metal contamination during 2011 to 2016 was initiated. Seawater and sediment samples of 25 locations depending on the sewage outlet locations in the northern Hangzhou Bay were collected to analyze the concentrations and temporal and spatial distribution of Cu, Pb, Zn, Cd, Hg, and As. Pollution condition, ecological risk, and potential sources were additionally analyzed. Results show that the annual mean concentrations of Cu, Pb, Zn, Cd, Hg, and As were 2.13-4.59, 0.212-1.480, 7.81-20.34, 0.054-0.279, 0.026-0.090, and 1.08-2.57 μg/L in the seawater, and were 16.34-28.35, 16.25-26.33, 67.32-97.61, 0.084-0.185, 0.029-0.061, and 6.09-14.08 μg/L in the sediments. A decreasing trend in Cu, Pb, Zn, Cd, and Hg concentrations and an increasing trend in As of the seawater were observed. However, in the sediment, the heavy metals demonstrated a rising trend, except for Hg. The single-factor pollution index showed an increasing trend in Cd and As in the seawater, depicting an enhanced pollution of Cd and As, while in the sediments, Cu, Pb, and As were in pollution-free level (average Geo-accumulation index (I) values below 0) in general, and only occasional slight pollution occurred in individual years, e.g., As with 0.403 in 2016. The mean I values of Cd ranged from - 0.865 to 0.274 during 2011 to 2016, indicating that the pollution level of Cd was slight, but is likely to increase in the forthcoming years. The level of heavy metal contamination in sediments was low in 2011 (5.853) and 2012 (5.172), and moderate during 2013 to 2016 (in the range of 6.107 to 7.598), while the degree of potential ecological risk was low in the study period, except moderate in 2013 (125.107). The highest contamination degree and potential ecological risk appeared in 2013 (Cd = 7.598; RI = 125.107), while Cd and Hg contributed over 75% of the ecological risk. Overall, the results show low pollution level and low potential ecological risk in the northern Hangzhou Bay; however, more attention should be paid to the potential ecological risk due to Hg and Cd. Graphical abstract Spatial distribution of the heavy metal levels in the sediment of the coastal environment of the northern Hangzhou Bay on a long-term basis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11110-6DOI Listing

Publication Analysis

Top Keywords

ecological risk
28
heavy metal
24
hangzhou bay
24
northern hangzhou
20
potential ecological
20
spatial distribution
12
metal contamination
12
pollution
8
metal pollution
8
temporal spatial
8

Similar Publications

CRISPR homing gene drive is a disruptive biotechnology developed over the past decade with potential applications in public health, agriculture, and conservation biology. This technology relies on an autonomous selfish genetic element able to spread in natural populations through the release of gene drive individuals. However, it has not yet been deployed in the wild.

View Article and Find Full Text PDF

Construction and verification of soil heavy metal establishment identification method based on dual-threshold of magnetic susceptibility.

J Hazard Mater

September 2025

Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, College of Forestry & College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.

Pollutants from industrial emissions and traffic accumulate in urban soils as road dust, carrying heavy metals (HMs) posing ecological and health risks. Magnetic susceptibility (MS), sensitive to ferromagnetic minerals, enables rapid HM contamination assessment. This study developed the Modified Dual-Threshold MS Evaluation Plot for Soil Contamination (M-Plot) using χ and χ% indices.

View Article and Find Full Text PDF

Degradation and ecological risk of a novel neonicotinoid insecticide imidaclothiz in aquatic environments: Kinetics, photodegradation and hydrolysis pathways, mechanism and metabolites toxicity evaluation.

Pestic Biochem Physiol

November 2025

Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U

Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.

View Article and Find Full Text PDF

Adsorption-desorption behavior of difenoconazole onto soils: Kinetics, isotherms, and influencing factors.

Pestic Biochem Physiol

November 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, PR China. Electronic address: wj

Difenoconazole (DFC) is a commonly used triazole fungicide known for its high efficiency and environmental persistence. A thorough understanding of its environmental behavior, particularly sorption in soil, is critical to obtain a comprehensive assessment of the ecological risk of DFC. In this study, three soils with distinct physicochemical properties (brown soil, cinnamon soil, and fluvo-aquic soil) were used to elucidate the adsorption mechanisms of DFC on soil.

View Article and Find Full Text PDF

Genotype-dependent apoptotic responses to cyantraniliprole exposure in Zebrafish (Danio rerio): Insights from statistical modeling and molecular validation.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, School of Tropical Agriculture and Forestry, Hainan University, DanZhou 571737, China. Electronic address:

Cyantraniliprole is a widely used insecticide in rice that could induce cellular damage. However, the mechanism of cyantraniliprole induced cell apoptosis was not clear. The Split-Split-Plot analysis revealed that the expression of apoptosis-related genes was significantly impacted by exposure time, concentration, genotype, and their complex interactions.

View Article and Find Full Text PDF