Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Natural killer (NK) cell-derived extracellular vesicles (NK-EVs) have garnered significant research interest in the field of tumor immunotherapy. However, the large-scale production of NK-EVs remains a major challenge, limiting their clinical application. This study aims to develop a simple and efficient method for the preparation of NK cell-derived nanovesicles (NK-NVs) and to evaluate their cytotoxicity and drug delivery potential.

Methods: In this study, we efficiently produced large quantities of NK-NVs by extruding NK cells. We conducted comprehensive characterization and protein profiling analyses of NK cells, NK-EVs, and NK-NVs. The cytotoxicity and cellular uptake of NK-NVs were evaluated, and the internalization mechanism was explored. To assess the drug delivery capability, doxorubicin (DOX) was loaded into NK-NVs (NK-NVs-DOX) using various loading strategies, including co-incubation, sonication, extrusion, and electroporation. We thoroughly evaluated the drug loading efficiency, particle size, stability, and cytotoxicity of NK-NVs-DOX.

Results: Extrusion-derived NK-NVs exhibited a remarkable 402.18-fold increase in particle yield and a 325.76-fold enhancement in protein yield compared to ultracentrifugation-isolated NK-EVs, while maintaining comparable morphology and EV-specific markers (Alix, TSG101, CD9). Functionally, NK-NVs induced delayed cytotoxicity against cancer cells via caveolin-mediated endocytosis, selectively sparing normal cells. Proteomic analysis revealed that NK-NVs shared 7,366 proteins with NK cells, surpassing the 5,326 proteins found in NK-EVs. Furthermore, extrusion-optimized NK-NVs-DOX demonstrated pH-sensitive drug release (30% higher at pH 5.5), significantly enhanced anti-cancer effects across four cancer cell lines, and stable drug retention for up to 28 days at 4°C, highlighting their promising therapeutic potential.

Conclusion: Extrusion-derived NK-NVs offer a low-cost, rapid, and high-yield production method while selectively inducing cytotoxicity in cancer cells. Their pH-sensitive drug release enhances drug loading stability. These advantages establish NK-NVs as a promising and scalable platform for tumor immunotherapy and drug delivery with significant clinical potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413849PMC
http://dx.doi.org/10.2147/IJN.S527756DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
nk-nvs
10
drug
9
extracellular vesicles
8
tumor immunotherapy
8
drug loading
8
extrusion-derived nk-nvs
8
cytotoxicity cancer
8
cancer cells
8
ph-sensitive drug
8

Similar Publications

Medications for Opioid Use Disorder in County Jails - Outcomes after Release.

N Engl J Med

September 2025

Department of Health Promotion and Policy, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst.

Background: In 2019, seven county correctional facilities (jails) in Massachusetts initiated pilot programs to provide all Food and Drug Administration-approved medications for opioid use disorder (MOUD).

Methods: This observational study used linked state data to examine postrelease MOUD receipt, overdose, death, and reincarceration among persons with probable opioid use disorder (OUD) in carceral settings who did or did not receive MOUD from these programs from September 1, 2019, through December 31, 2020. Log-binomial and proportional-hazards models were adjusted for propensity-score weights and baseline covariates that remained imbalanced after propensity-score weighting.

View Article and Find Full Text PDF

Discovery of -(thiazol-2-yl) Furanamide Derivatives as Potent Orally Efficacious AR Antagonists with Low BBB Permeability.

J Med Chem

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.

View Article and Find Full Text PDF

Objective: Systematize the methodological decisions adopted in the budget impact analyses of the recommendation reports of the National Commission for the Incorporation of Technologies into the Unified Health System (Conitec) regarding drugs incorporated into the SUS (Brazilian Unified Health System) in the period from 2012 to 2024.

Methods: This is an exploratory, descriptive, retrospective study, based on document analysis of Conitec's technical recommendation reports with decisions on the incorporation of drugs published up to 2024. Information from the Budget Impact Analyses (BIA) was extracted and presented in terms of percentage, median and interquartile range.

View Article and Find Full Text PDF

Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.

View Article and Find Full Text PDF

Central nervous system (CNS) diseases, including neurodegenerative diseases, stroke, brain tumors, and others, result in poor quality of life and can cause substantial disability. Not all CNS diseases are amenable to surgical approaches, so drug development is important for disease treatment. Unfortunately, there are few drugs currently available for CNS diseases.

View Article and Find Full Text PDF