98%
921
2 minutes
20
Tissue adhesives have emerged as a promising alternative to conventional sutures and staplers in the management of hemostasis, tissue defect sealing, and wound repair. However, the efficacy of current bio-adhesives in clinical practice is compromised by the limitations, including poor wet adhesion, inadequate mechanical strength, vulnerability to gastrointestinal fluids, and insufficient hemostatic performance. Herein, a marine organism-inspired tough and adhesive patch (MOTAP) was developed to address these challenges. Inspired by the tough shell of crustacean chitin, the thermosensitive quaternized derivative was employed to engineer a film with exceptional mechanical strength. Subsequently, harnessing the adhesion mechanism of mussels, a catechol and aldehyde-modified hyaluronic acid was integrated to endow the film with adhesive properties, resulting in a tough and adhesive patch. This patch exhibits great mechanical property, excellent adhesive strength (175 kPa), and an ultrahigh burst pressure (92 kPa). MOTAP robustly seals various tissues, effectively prevents the leakage of corrosive gastrointestinal fluids, and rapidly induces coagulation. Compared to commercial and clinical materials, MOTAP demonstrates superior efficacy in sealing perforated stomachs, achieving hemostasis, and promoting wound healing. Therefore, MOTAP with good biocompatibility and biodegradability is a promising adhesive patch for managing hemorrhage, tissue damages, and wound closure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2025.124086 | DOI Listing |
Tissue Eng Regen Med
September 2025
Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea.
Background: Endometrial damage is a critical factor contributing to infertility, particularly in women with refractory thin endometrium or intrauterine adhesions. Therefore, developing innovative therapeutic strategies for endometrial regeneration is essential. This study evaluates the regenerative potential of endometrial stromal cell (EMSC) injection and EMSC-loaded patch application in a mouse model with ethanol-induced endometrial damage.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China. Electronic address:
Tissue adhesives have emerged as a promising alternative to conventional sutures and staplers in the management of hemostasis, tissue defect sealing, and wound repair. However, the efficacy of current bio-adhesives in clinical practice is compromised by the limitations, including poor wet adhesion, inadequate mechanical strength, vulnerability to gastrointestinal fluids, and insufficient hemostatic performance. Herein, a marine organism-inspired tough and adhesive patch (MOTAP) was developed to address these challenges.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
Postoperative peritoneal adhesion, driven by inflammatory response and fibrotic deposition, remains the most common complication following abdominal surgeries, with limited effective solutions. Herein, a dual-network hydrogel patch (GPSB) is developed for effective peritoneal adhesion prevention through interpenetrating a gelatin network with a zwitterionic polysulfobetaine (PSB) network. The biodegradable gelatin network is dynamically crosslinked zinc ion (Zn)-polyphenol coordination, endowing the patch with inherent antibacterial and pro-healing activities.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China. Electronic address:
Reversible electroadhesive polyelectrolyte gels have emerged as promising materials for flexible electronic and soft robotic applications. While current research predominantly emphasizes polymer design and structural optimization to enhance both the reversibility and strength of electroadhesion, fundamental limitations persist in elucidating ion-mediated interfacial mechanisms. Herein, the synergistic effects of ion species selection and interfacial engineering were systematically investigated through the development of distinct polyelectrolyte hydrogel assemblies.
View Article and Find Full Text PDFJ Inflamm Res
August 2025
Department of Stomatology, The General Hospital of Western Theater Command of the Chinese People's Liberation Army, Chengdu, Sichuan, 610000, People's Republic of China.
Objective: To evaluate the clinical efficacy and inflammatory modulation potential of Kangfuxin Liquid (KFXY; a traditional Chinese medicine recovery solution) in combination with metronidazole (MTZ) for the treatment of recurrent oral ulcers (ROU).
Methods: A retrospective cohort study was conducted using clinical data from 117 ROU patients admitted between January 2021 and January 2023. Patients were categorized into two groups: a control group (n=58) treated with MTZ oral adhesive patches alone, and an observation group (n=59) receiving KFXY plus MTZ.