Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dual-specific phosphatase-8 (DUSP8), identified as the first gene in a genome-wide association study (GWAS), is implicated in cellular oxidative stress, proliferation, apoptosis, and drug resistance through its negative regulation of the dephosphorylation activities of JNK, ERK, and p38 within the MAPK pathway. Recent studies have shown that DUSP8 plays a pivotal role in the progression of several human diseases, notably colorectal cancer, diabetic kidney disease, and breast cancer. This suggests that DUSP8 may represent a novel target for clinical intervention in these diseases. This review first introduces the biological structure and function of DUSP8, with a focus on its relationship with a series of diseases and the regulatory mechanisms involved. Furthermore, we concentrate on unresolved scientific questions in the current research, aiming to establish a new theoretical foundation for the diagnosis and treatment of related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042392PMC
http://dx.doi.org/10.1186/s12967-025-06499-yDOI Listing

Publication Analysis

Top Keywords

target clinical
8
dual-specific phosphatases-8
4
phosphatases-8 target
4
clinical disease
4
disease intervention
4
intervention dual-specific
4
dual-specific phosphatase-8
4
dusp8
4
phosphatase-8 dusp8
4
dusp8 identified
4

Similar Publications

IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF

Despite advancements in systemic therapy, the mortality rate for patients with metastatic melanoma remains around 70%, underscoring the imperative for alternative treatment strategies. Through the establishment of a chemoresistant melanoma model and a subsequent drug investigation, we have identified pacritinib, a medication designed for treating myelofibrosis and severe thrombocytopenia, as a potential candidate to overcome resistance to melanoma therapy. Our research reveals that pacritinib, administered at clinically achievable concentrations, effectively targets dacarbazine-resistant melanoma cells by suppressing IRAK1 rather than JAK2.

View Article and Find Full Text PDF

TRIM39 reinforces E2-ESR1 signaling through SUMOylation of ESR1 to hinder the progression of aortic dissection.

Atherosclerosis

September 2025

Department of Cardiothoracic and Macrovascular Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, Hubei Province, 434020, China. Electronic address:

Background And Aims: Aortic dissection (AD) is one of the most dangerous and tricky diseases in the field of cardiovascular surgery, severely affecting public health. Recent studies have found that SUMOylation is linked to the pathogenesis of cardiovascular diseases. However, we know very little about the molecular mechanisms of SUMOylation in AD.

View Article and Find Full Text PDF

Aberrant activation of fibroblast growth factor receptors (FGFRs) plays a critical role in tumorigenesis across multiple cancer types, driving the development of various FGFR inhibitors. Despite clinical advances, therapeutic efficacy remains limited by the emergence of drug resistance, primarily mediated by gatekeeper mutations in FGFRs. To overcome this challenge, we designed and synthesized a novel series of 7-(1-methyl-1-indole-3-yl)-5-pyrrolo[2,3-]pyrazine derivatives as covalent pan-FGFR inhibitors targeting both wild-type and gatekeeper mutants.

View Article and Find Full Text PDF