98%
921
2 minutes
20
Solid-state electrolytes based on in situ ring-opening polymerization of 1,3-dioxolane (DOL) have attracted widespread attention in Li metal batteries because of their high interface compatibility. However, its conventional cationic polymerization mechanism frequently results in the formation of long polymer chains during in situ polymerization, thereby impeding Li transport. Here, we regulate the ring opening polymerization of DOL by introducing ,-dimethyltrifluoroacetamide (FDMA), thus avoiding the formation of long polymer chains. Meanwhile, FDMA can derive a stable SEI rich in LiF during electrochemical cycling, improving interface stability and suppressing dendritic Li growth. Therefore, the full battery with LiFePO as the cathode can achieve a high capacity retention rate of 83.9% after 400 cycles at a rate of 5.0 C. At -20 °C, the Li∥LiFePO full battery can provide a high capacity of 137 mAh g. The solvent-induced strategy provides a promising new avenue for designing a solid electrolyte with high temperature resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c06471 | DOI Listing |
Waste Manag Res
September 2025
School of Environmental Science and Engineering, Tongji University, Shanghai, PR China.
Waste three-way catalysts (TWCs) and waste LiCoO batteries represent critical environmental challenges due to hazardous components yet contain high-value resources, and their recycling has garnered widespread attention. We propose a novel 'waste-to-waste' synergistic recycling where spent LiCoO batteries reconstruct mineral phases of waste TWCs, enabling co-recovery of platinum group metals and Li/Co without traditional oxidants. However, the environmental performance of this process still requires further analysis.
View Article and Find Full Text PDFNature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDFWater Res
September 2025
Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
The increasing production of lithium ion batteries (LIBs) necessitates the development of green and sustainable technologies for their recycling. Unfortunately, most of the recycling technologies used are always associated with high energy and chemical reagents consumption, posing a great risk to the environment. Herein, we propose a photovoltaic driven carrier-facilitated electrodialytic membrane process for low carbon recovery of spent ternary LIBs.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.
View Article and Find Full Text PDF