98%
921
2 minutes
20
During lactobacillus fermentation, the types of proteins in the fermentation substrate significantly influence the characteristics of the fermented product. Proteins are composed of various amino acids. Consequently, investigating the metabolic mechanisms of key amino acids during lactic acid bacteria fermentation is important for improving their application in the food industry. In this study, the growth of SMN-LBK was significantly inhibited following glutamate and arginine deficiency ( < 0.05). Genomic analysis and in vitro addition assays showed that α-ketoglutarate (OXO), as a precursor of glutamate, significantly eliminated growth inhibition of SMN-LBK ( < 0.05). Meanwhile, the inhibition of SMN-LBK growth following arginine deficiency may be linked to glutamate. Metabolomics analysis illustrated that glutamate and arginine deficiencies mainly affected the carbohydrate and amino acid metabolic pathways of SMN-LBK, especially the pentose phosphate pathway, alanine, glutamate and aspartate metabolism, and arginine metabolism. Transcriptomics analysis further identified glutamate and arginine deficiencies affecting carbohydrate and amino acid metabolism, specifically the glutamate metabolism, pentose phosphate pathway, and glycolysis/gluconeogenesis, involving key genes such as pfkA, gapA, ldh, argG, argE, and argH. Elucidating the molecular mechanisms of key amino acids in SMN-LBK will provide a theoretical foundation for understanding the differential fermentation of various proteins by lactic acid bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899468 | PMC |
http://dx.doi.org/10.3390/foods14050730 | DOI Listing |
Chem Commun (Camb)
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
For the first time, a dual-ligand MOF, Al-Fum/Asp, was synthesized by partially replacing fumarate ligands in the Al-Fum framework with l-aspartic acid and incorporated into PIM-1 to fabricate mixed-matrix membranes. Amino groups anchored on Al-Fum/Asp enhance CO-adsorption, enabling the membrane to achieve CO/N separation performance beyond the 2019 Robeson upper bound.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P.R. China.
The stimulator of interferon genes (STING) pathway is a central target in cancer immunotherapy, but current STING agonist therapies lack precision control, leading to suboptimal therapeutic outcomes and systematic adverse effects. Herein, we engineered a dual-locked immuno-polymeric nanoplatform (IPN) with precise spatiotemporal control over the release of STING agonists to enhance cancer immunotherapy. This platform, constructed from biocompatible poly(β-amino esters) (PBAE), incorporates the STING agonist (MSA-2) covalently linked via ester bonds, which is co-assembled with a sonosensitizer.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China. Electronic address:
Non-steroidal anti-inflammatory drugs (NSAIDs) residues pose a potential threat to aquatic ecosystems and food safety. In this work, novel imine bond/pyridine nitrogen-rich magnetic microporous organic networks (MMONs-Br and MMONs-I) were synthesized via a facile one-pot strategy using brominated and iodinated precursors for the detection of NSAIDs in fish. Brunauer-Emmett-Teller analysis revealed a striking 11-fold difference in specific surface areas between the two materials (MMONs-Br: 293.
View Article and Find Full Text PDFPhytomedicine
August 2025
College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Yunnan Provincial Engineering Research Center for Edible
Background: Walnut septum, a Juglans regia L. by-product with culinary-medicinal value, is a rich source of bioactive polyphenols. The chemical complexity and anti-colitis activities of these polyphenols remain uncharacterized.
View Article and Find Full Text PDF