98%
921
2 minutes
20
For the first time, a dual-ligand MOF, Al-Fum/Asp, was synthesized by partially replacing fumarate ligands in the Al-Fum framework with l-aspartic acid and incorporated into PIM-1 to fabricate mixed-matrix membranes. Amino groups anchored on Al-Fum/Asp enhance CO-adsorption, enabling the membrane to achieve CO/N separation performance beyond the 2019 Robeson upper bound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cc03605d | DOI Listing |
Chem Commun (Camb)
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
For the first time, a dual-ligand MOF, Al-Fum/Asp, was synthesized by partially replacing fumarate ligands in the Al-Fum framework with l-aspartic acid and incorporated into PIM-1 to fabricate mixed-matrix membranes. Amino groups anchored on Al-Fum/Asp enhance CO-adsorption, enabling the membrane to achieve CO/N separation performance beyond the 2019 Robeson upper bound.
View Article and Find Full Text PDFChem Asian J
September 2025
Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
In this study, a silicon carbide (SiC) mixed-matrix membrane for oil-water separation was successfully fabricated within the nanofiltration range. Silicon carbide was synthesized using rice husk ash (RHA), an agricultural waste material, combined with polydimethylsiloxane (PDMS) and subsequently incorporated into a mixed matrix membrane for oil-water separation. Polysulfone (PSF) and polyvinylpyrrolidone (PVP) were employed as polymer supports for fabricating the SiC-based mixed matrix membrane, which was tested in a dead-end filtration setup.
View Article and Find Full Text PDFNat Commun
September 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
Mixed matrix membranes (MMMs) capable of breaking the permeability-selectivity trade-off suffer from the inefficient and disconnected bulky transport channels as well as inferior interfacial compatibility between nanomaterials and polymers. Herein, we propose an original photothermal-triggered in-situ gelation approach to elaborate an original class of MMMs, termed nanofiber-interwoven gel membranes (NIGMs) that feature tunable 3D-interconnected ultrafast transport channels and highly-selective CO-philic gel for boosting CO separation performance. The key design of NIGMs lies in leveraging dual functions of CNT-interwoven skeleton: (1) serving as a photothermal confined reactor that rapidly triggers in-situ gelation of highly-selective CO-philic gel without phase separation-induced interfacial defects to construct defect-free and thickness-controllable NIGMs; (2) functioning as a 3D-interconnected continuous skeleton for providing ultrafast CO transport channels.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
Industrial separation processes account for 10-15% of global energy consumption. Membrane-based processes are less energy-intensive than traditional gas separation technologies; however, enhanced material separation performance and stability for numerous gas mixtures are needed for widespread industrial adoption. This work presents a generalizable strategy for preparing mixed-matrix gas separation membranes exceeding the performance upper bounds of existing polymer membranes for a wide variety of industrial gases.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
Cu-BTC (HKUST-1) metal-organic framework (MOF) is widely recognized for its carbon capture capability due to its unsaturated copper sites, high surface area, and well-defined porous structure. This study developed mixed matrix membranes (MMMs) using cellulose triacetate (CTA), incorporating bimetallic Ni-Cu-BTC MOFs for CO/CH separation, and benchmarked them against membranes fabricated with monometallic Cu-BTC. CTA was selected for its biodegradability, membrane-forming properties, and cost-effectiveness.
View Article and Find Full Text PDF