Sorption-enhanced dual-ligand MOF-based mixed-matrix membranes for CO separation.

Chem Commun (Camb)

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For the first time, a dual-ligand MOF, Al-Fum/Asp, was synthesized by partially replacing fumarate ligands in the Al-Fum framework with l-aspartic acid and incorporated into PIM-1 to fabricate mixed-matrix membranes. Amino groups anchored on Al-Fum/Asp enhance CO-adsorption, enabling the membrane to achieve CO/N separation performance beyond the 2019 Robeson upper bound.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc03605dDOI Listing

Publication Analysis

Top Keywords

mixed-matrix membranes
8
sorption-enhanced dual-ligand
4
dual-ligand mof-based
4
mof-based mixed-matrix
4
membranes separation
4
separation time
4
time dual-ligand
4
dual-ligand mof
4
mof al-fum/asp
4
al-fum/asp synthesized
4

Similar Publications

Sorption-enhanced dual-ligand MOF-based mixed-matrix membranes for CO separation.

Chem Commun (Camb)

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

For the first time, a dual-ligand MOF, Al-Fum/Asp, was synthesized by partially replacing fumarate ligands in the Al-Fum framework with l-aspartic acid and incorporated into PIM-1 to fabricate mixed-matrix membranes. Amino groups anchored on Al-Fum/Asp enhance CO-adsorption, enabling the membrane to achieve CO/N separation performance beyond the 2019 Robeson upper bound.

View Article and Find Full Text PDF

In this study, a silicon carbide (SiC) mixed-matrix membrane for oil-water separation was successfully fabricated within the nanofiltration range. Silicon carbide was synthesized using rice husk ash (RHA), an agricultural waste material, combined with polydimethylsiloxane (PDMS) and subsequently incorporated into a mixed matrix membrane for oil-water separation. Polysulfone (PSF) and polyvinylpyrrolidone (PVP) were employed as polymer supports for fabricating the SiC-based mixed matrix membrane, which was tested in a dead-end filtration setup.

View Article and Find Full Text PDF

Nanofiber-interwoven gel membranes with tunable 3D-interconnected transport channels for efficient CO separation.

Nat Commun

September 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.

Mixed matrix membranes (MMMs) capable of breaking the permeability-selectivity trade-off suffer from the inefficient and disconnected bulky transport channels as well as inferior interfacial compatibility between nanomaterials and polymers. Herein, we propose an original photothermal-triggered in-situ gelation approach to elaborate an original class of MMMs, termed nanofiber-interwoven gel membranes (NIGMs) that feature tunable 3D-interconnected ultrafast transport channels and highly-selective CO-philic gel for boosting CO separation performance. The key design of NIGMs lies in leveraging dual functions of CNT-interwoven skeleton: (1) serving as a photothermal confined reactor that rapidly triggers in-situ gelation of highly-selective CO-philic gel without phase separation-induced interfacial defects to construct defect-free and thickness-controllable NIGMs; (2) functioning as a 3D-interconnected continuous skeleton for providing ultrafast CO transport channels.

View Article and Find Full Text PDF

Industrial separation processes account for 10-15% of global energy consumption. Membrane-based processes are less energy-intensive than traditional gas separation technologies; however, enhanced material separation performance and stability for numerous gas mixtures are needed for widespread industrial adoption. This work presents a generalizable strategy for preparing mixed-matrix gas separation membranes exceeding the performance upper bounds of existing polymer membranes for a wide variety of industrial gases.

View Article and Find Full Text PDF

Cu-BTC (HKUST-1) metal-organic framework (MOF) is widely recognized for its carbon capture capability due to its unsaturated copper sites, high surface area, and well-defined porous structure. This study developed mixed matrix membranes (MMMs) using cellulose triacetate (CTA), incorporating bimetallic Ni-Cu-BTC MOFs for CO/CH separation, and benchmarked them against membranes fabricated with monometallic Cu-BTC. CTA was selected for its biodegradability, membrane-forming properties, and cost-effectiveness.

View Article and Find Full Text PDF