Dual modes of DNA N-methyladenine maintenance by distinct methyltransferase complexes.

Proc Natl Acad Sci U S A

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes. AMT7 complex, featuring high MTase activity and processivity, is connected to transcription-associated epigenetic marks, including H2A.Z and H3K4me3, and is required for the bulk of maintenance methylation. In contrast, AMT6 complex, with reduced activity and processivity, is recruited by PCNA to initiate maintenance methylation immediately after DNA replication. These two complexes coordinate in maintenance methylation. By integrating signals from both replication and transcription, this mechanism ensures the faithful and efficient transmission of 6mA as an epigenetic mark in eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761967PMC
http://dx.doi.org/10.1073/pnas.2413037121DOI Listing

Publication Analysis

Top Keywords

maintenance methylation
16
dna n-methyladenine
8
distinct methyltransferase
8
activity processivity
8
maintenance
5
dual modes
4
modes dna
4
n-methyladenine maintenance
4
maintenance distinct
4
complexes
4

Similar Publications

Autoimmune hemolytic anemia (AIHA) is uncommon in the pediatric population, particularly when it manifests as severe anemia. AIHA is characterized by a positive direct antiglobulin test (DAT) and immune-mediated red blood cell (RBC) destruction. AIHA is subclassified on the basis of the thermal characteristics of autoantibody into warm, cold, and mixed.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF

Co-treatment of ethylene and methyl jasmonate synergistically enhances postharvest marketability and quality of lemons by regulating phenolic metabolism and antioxidant capacity.

Food Chem

August 2025

College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing &

Lemon (Citrus limon), an important citrus fruit, suffers from slow postharvest ripening and rapid quality deterioration, including moisture loss and membrane lipid peroxidation. This study investigated the effects of ethylene (ETH) and methyl jasmonate (MeJA) co-treatment on ripening and quality maintenance of green-mature lemons. ETH + MeJA accelerated peel degreening, improved marketability, and simultaneously suppressed the ETH-induced high respiration rate and weight loss, preserving soluble solids, titratable acidity, and ascorbic acid.

View Article and Find Full Text PDF

Regulation of R-loops by nucleic acid and protein modifications.

Essays Biochem

September 2025

Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.

R-loop, a three-stranded nucleic acid structure consisting of the RNA:DNA hybrid and the displaced singlestranded DNA, is crucial for many cellular processes but could be a threat to genome integrity if dysregulated. The homeostasis of R-loops is governed by various factors including helicases, nucleases, and chromatin remodelers. Since there are many excellent reviews about R-loops, we focus on discussing how R-loop homeostasis is regulated via nucleic acid and protein modifications.

View Article and Find Full Text PDF

Tissue-resident memory T cells (TRM) represent a heterogeneous population of T cells that exhibit both effector and memory functionalities. They express specific gene signatures that enable them to occupy tissues without recirculating, thus providing a first response against reencountered pathogens or antigens. TRM have been implicated in the pathogenesis of various diseases, including autoimmune disorders, infections, and cancers.

View Article and Find Full Text PDF