Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing, particularly in challenging environments for monitoring industry and healthcare applications. These systems are equipped with battery-free operation, wireless connectivity, and are designed to be both miniaturized and lightweight. Such features enable the safe, real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices. Despite the exploration into diverse application environments, the development of a systematic and comprehensive research framework for system architecture remains elusive, which hampers further optimization of these systems. This review, therefore, begins with an examination of application scenarios, progresses to evaluate current system architectures, and discusses the function of each component-specifically, the passive sensor module, the wireless communication model, and the readout module-within the context of key implementations in target sensing systems. Furthermore, we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios, derived from this systematic approach. By outlining a research trajectory for the application of passive wireless systems in sensing technologies, this paper aims to establish a foundation for more advanced, user-friendly applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712043PMC
http://dx.doi.org/10.1007/s40820-024-01599-8DOI Listing

Publication Analysis

Top Keywords

passive wireless
12
advancements passive
8
sensing systems
8
healthcare applications
8
wireless
5
sensing
5
systems
5
wireless sensing
4
systems monitoring
4
monitoring harsh
4

Similar Publications

Intrinsically Temperature-Insensitive and Highly Sensitive Flexible Wireless Strain Sensor.

ACS Sens

September 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.

Accurate strain monitoring in environments with coexisting mechanical deformation and temperature fluctuations─such as solid rocket propellants, battery enclosures, and human ligaments─remains a longstanding challenge for flexible electronics. Conventional strain sensors suffer from significant thermal drift due to the intrinsic temperature dependence of their sensing materials, limiting their reliability in wireless and implantable applications. Here, we report an intrinsically temperature-insensitive, highly sensitive, wireless flexible strain sensor based on near-field communication technology.

View Article and Find Full Text PDF

Single-Layer High-Efficiency Metasurface for Multi-User Signal Enhancement.

Micromachines (Basel)

August 2025

State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.

In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. A high-efficiency metasurface array is fabricated based on PCB technology, which utilizes subwavelength units for wide-range phase modulation to construct a multi-user energy convergence model in the WiFi band.

View Article and Find Full Text PDF

A Monolithically Integrated MXene-Printed Hybrid Energy System for Wireless Self-Powered Microelectronics.

Small

August 2025

Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.

Reliable and sustainable energy supply remains a critical challenge in wearable and implantable microelectronics. Although hybrid energy strategies show promise, most existing systems rely on stacked, multi-component designs, hindering integration and scalability. Here, a fully printed, monolithically integrated MXene-based system combining active wireless charging and passive energy harvesting is demonstrated.

View Article and Find Full Text PDF

This study presents a wireless, non-invasive sensing system for monitoring the dielectric permittivity of materials, with a particular focus on applications in cultural heritage conservation. The system integrates a passive split-ring resonator tag, electromagnetically coupled to a compact antipodal Vivaldi antenna, operating in the reactive near-field region. Both numerical simulations and experimental measurements demonstrate that shifts in the antenna's reflection coefficient resonance frequency correlate with variations in the dielectric permittivity of the material under test.

View Article and Find Full Text PDF

Wireless, passive inductor-capacitor sensors for biomedical applications.

Med X

August 2025

Department of Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL USA.

In contemporary medical technologies, the necessity for efficient, precise, and real-time health monitoring and management is becoming increasingly critical with the prevalence of chronic diseases and the aging population. Traditional wired sensors and active wireless sensors continue to present numerous problems in practical applications, including complex structures, substantial size, frequent battery replacements, and an elevated risk of infection. Passive and wireless inductor-capacitor (LC) sensors are emerging as significant candidates to address these challenges.

View Article and Find Full Text PDF