Publications by authors named "Zekai Huang"

Accurate strain monitoring in environments with coexisting mechanical deformation and temperature fluctuations─such as solid rocket propellants, battery enclosures, and human ligaments─remains a longstanding challenge for flexible electronics. Conventional strain sensors suffer from significant thermal drift due to the intrinsic temperature dependence of their sensing materials, limiting their reliability in wireless and implantable applications. Here, we report an intrinsically temperature-insensitive, highly sensitive, wireless flexible strain sensor based on near-field communication technology.

View Article and Find Full Text PDF

Microplastics (MPs), particularly those exceeding 20 μm in diameter, are increasingly detected in environment and animal tissues, yet their cytotoxicity remains poorly understood. While existing studies focused on MPs with relatively small sizes (≤ 20 μm) or nanoplastics (NPs), the biological impacts of large-sized MPs and amino-modified MPs are underexplored. In this study, we investigated the oxidative stress (OS)-mediated responses of alpha mouse liver 12 (AML12) cells to 50 μm polystyrene MPs (PS-MPs) and polystyrene-amine modified MPs (PS-NH-MPs) at concentrations of 0, 0.

View Article and Find Full Text PDF

Wideband radar is becoming increasingly significant in modern radar systems. However, traditional monopulse angle estimation techniques are not suitable for wideband targets exhibiting range extension effects. To address this, we explore the angle estimation problem for wideband Linear Frequency-Modulated (LFM) signals and propose a new monopulse angle estimation algorithm tailored for range-spread targets.

View Article and Find Full Text PDF

Microplastics (MPs) are emerging environmental pollutants that pose a significant threat to wildlife within forest ecosystems. However, the quantity and types of MPs in wildlife forest habitats remain unclear. This study is the first to assess the distribution of MPs in the Amur tiger habitat of northeast China.

View Article and Find Full Text PDF

Objective: Here, bibliometric and visual analytical techniques were employed to assess the key features of the 100 most cited publications concerning corticospinal tract (CST) regeneration.

Methods: Research was conducted within the Web of Science Core Collection to pinpoint the 100 most cited publications on CST regeneration. From these, comprehensive data encompassing titles, authorship, key terms, publication venues, release timelines, geographic origins, and institutional affiliations were extracted, followed by an in-depth bibliometric examination.

View Article and Find Full Text PDF

The nitrogen cycle has an important impact on the element cycle of the soil ecosystem. Moreover, it is important to clarify the key environmental factors of nitrogen cycle microorganisms for ecological restoration in mining areas. The functional flora can regulate the growth of vegetation by participating in the biogeochemical cycle of soil elements in the mining area, which is beneficial to the reclamation of the mining area.

View Article and Find Full Text PDF

With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity.

View Article and Find Full Text PDF

The emission of microplastics and heavy metals in landfills has attracted widespread attention for its stabilization process. Microplastics have become carriers of heavy metals due to their adsorption properties, affecting their environmental behavior. However, the effects of landfill stabilization on the interaction between microplastics and heavy metals in leachate are ambiguous.

View Article and Find Full Text PDF

The interaction between organic phosphorus (OP) and iron oxide significantly influences the phosphorus cycle in the natural environment. In shallow lakes, intense oxidation-reduction fluctuations constantly alter the existing form of iron oxides, but little is known about their impact on the adsorption and fractionation of OP molecules. In this study, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS) was used to investigate the fractionation of OP from alkali-extracted sediment induced by crystalline goethite and amorphous ferrihydrite adsorption at a molecular scale.

View Article and Find Full Text PDF

Purpose: The research endeavors to explore the implications of CD47 in cancer immunotherapy effectiveness. Specifically, there is a gap in comprehending the influence of CD47 on the tumor immune microenvironment, particularly in relation to CD8 + T cells. Our study aims to elucidate the prognostic and immunological relevance of CD47 to enhance insights into its prospective utilities in immunotherapeutic interventions.

View Article and Find Full Text PDF

The N-methyladenosine (m6A) modification of ribosomal RNA (rRNA) plays critical roles in regulating the function of ribosomes, the essential molecular machines that translate genetic information from mRNA into proteins. Specifically, m6A modification affects ribosome biogenesis, stability, and function by regulating the processing and maturation of rRNA, the assembly and composition of ribosomes, and the accuracy and efficiency of translation. Furthermore, m6A modification allows for dynamic regulation of translation in response to environmental and cellular signals.

View Article and Find Full Text PDF

Aspirin and its active metabolite salicylate have emerged as promising agents for the chemoprevention of colorectal cancer (CRC). Moreover, aspirin suppresses the progression of established CRCs. However, the underlying molecular mechanisms are not completely understood.

View Article and Find Full Text PDF
Article Synopsis
  • Lumbar punctures, while essential for diagnostics and therapies, can be risky due to variations in soft tissue, especially in older and obese patients; a new robot-assisted system aims to improve precision by automatically targeting the right tissue layer using tissue recognition techniques.!* -
  • The robotic system uses a probe with concentric electrodes to measure bio-impedance signals, which are analyzed by a master computer using a Bayesian neural network to classify different soft tissues and guide the robotic movement accordingly.!* -
  • Testing on ex vivo tissue phantoms shows that this technology may enhance the safety and accuracy of lumbar punctures, and it could also be adapted for other procedures like discography and epidural steroid injections, provided tissue recognition can
View Article and Find Full Text PDF

In order to explore the species composition, spatial distribution and relationship between the phytoplankton community and environmental factors in Lake Longhu, the phytoplankton community structures and environmental factors were investigated in July 2020. Clustering analysis (CA) and analysis of similarities (ANOSIM) were used to identify differences in phytoplankton community composition. Generalized additive model (GAM) and variance partitioning analysis (VPA) were further analyzed the contribution of spatial distribution and environmental factors in phytoplankton community composition.

View Article and Find Full Text PDF

Background: The predictive efficacy of current biomarker of immune checkpoint inhibitors (ICIs) is not sufficient. This study investigated the causality between radiomic biomarkers and immunotherapy response status in patients with stage IB-IV non-small cell lung cancer (NSCLC), including its biological context for ICIs treatment response prediction.

Methods: CT images from 319 patients with pretreatment NSCLC receiving immunotherapy between January 2015 and November 2021 were retrospectively collected and composed a discovery (n=214), independent validation (n=54), and external test cohort (n=51).

View Article and Find Full Text PDF

The miR-34a and miR-34b/c encoding genes represent direct targets of the p53 transcription factor, and presumably mediate part of the tumor suppressive effects of p53. Here, we sought to determine their functional relevance by inactivating miR-34a and/or miR-34b/c using a CRISPR/Cas9 approach in the colorectal cancer (CRC) cell line HCT116. Concomitant deletion of miR-34a and miR-34b/c resulted in significantly reduced suppression of proliferation after p53 activation, enhanced migration, invasion and EMT, as well as reduced sensitivity to chemotherapeutics, increased stress-induced autophagic flux, decreased apoptosis and upregulation of autophagy-related genes after 5-FU treatment.

View Article and Find Full Text PDF

Optical coherence tomography is a new promising chromatographic imaging technique with the advantages of noncontact and high resolution without damage, which is widely used in the field of biological tissue detection and imaging. As an important optical element in the system, the wide-angle depolarizing reflector plays a key role in the accurate acquisition of optical signals. TaO and SiO are selected as the coating materials for the technical parameter requirements of the reflector in the system.

View Article and Find Full Text PDF

Curcumin, a natural phytochemical isolated from tumeric roots, represents a candidate for prevention and therapy of colorectal cancer/CRC. However, the exact mechanism of action and the downstream mediators of curcumin's tumor suppressive effects have remained largely unknown. Here we used a genetic approach to determine the role of the p53/miR-34 pathway as mediator of the effects of curcumin.

View Article and Find Full Text PDF

Background: Protein downstream processing remains a challenge in protein production, especially in low yields of products, in spite of ensuring effective disruption of cell and separation of target proteins. It is complicated, expensive and time-consuming. Here, we report a novel nano-bio-purification system for producing recombinant proteins of interest with automatic purification from engineered bacteria.

View Article and Find Full Text PDF

Members of the microRNA-34/miR-34 family are induced by the p53 tumor suppressor and themselves possess tumor suppressive properties, as they inhibit the translation of mRNAs that encode proteins involved in processes, such as proliferation, migration, invasion, and metastasis. Here we performed a comprehensive integrative meta-analysis of multiple computational and experimental miR-34 related datasets and developed tools to identify and characterize novel miR-34 targets. A miR-34 target probability score was generated for every mRNA to estimate the likelihood of representing a miR-34 target.

View Article and Find Full Text PDF

Nanofiber bundles with specific areas bring a new opportunity for selective adsorption and oil/water or air separation. In this work, nanofiber bundles were prepared by the electrospinning of immiscible polystyrene (PS)/N-trifluoroacetylated polyamide 6 (PA6-TFAA) blends via the introduction of carbon nanotubes (CNTs) or a copolymer of styrene and 3-isopropenyl-α, α'-dimethylbenzene isocyanate (TMI), which was denoted as PS-co-TMI. Herein, CNT was used to increase the conductivity of the precursor for enhancing the stretch of PS droplets under the same electric field, and PS-co-TMI was used as a reactive compatibilizer to improve the compatibility of a PS/PA6-TFAA blend system for promoting the deformation.

View Article and Find Full Text PDF

Objective: To uncover novel prognostic and therapeutic targets for BLCA, our study is the first to investigate the role of hsa-mir-183 and its up-regulated predicted target genes in bladder urothelial carcinoma.

Methods: To address this issue, our study explored the roles of hsa-mir-183 predicted target genes in the prognosis of BLCA via UALCAN, Metascape, Kaplan-Meier plotter, Human Protein Atlas, TIMER2.0, cBioPortal and Genomics of Drug Sensitivity in Cancer databases.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore immune profiles in patients with benign prostatic hyperplasia (BPH) by measuring lymphocyte subsets and T cell proportions.
  • Results showed significant reductions in CD3, CD4, and CD8 T cells in BPH patients, while NK and B cells remained unchanged.
  • The findings suggest that immune dysfunction related to BPH may increase the risk of infections and tumor development, potentially contributing to the progression towards prostate cancer.
View Article and Find Full Text PDF

Epidermal growth factor receptor tyrosine kinase inhibitors therapy, such as gefitinib, have proven to be effective for lung adenocarcinoma with epidermal growth factor receptor-sensitive mutations. However, drug resistance remains inevitable and the underlying mechanisms are still elusive and poorly understood. In order to explore the mechanisms underlying tyrosine kinase inhibitors resistance, we used long non-coding RNA microarray analysis and found that long non-coding RNA H19 was highly expressed in gefitinib-resistant cell lines.

View Article and Find Full Text PDF

Background: MiR-148b-3p is an important microRNA that has been reported to be significantly related to various types of cancer, but its role in lung adenocarcinoma remains elusive. The purpose of this study is to detect the expression level of miR-148b-3p in lung adenocarcinoma specimens, and to analyze its correlation with the clinicopathological features as well as the prognosis of patients with lung adenocarcinoma.

Methods: A total of 123 tumor specimens from lung adenocarcinoma patients who underwent surgical resection in our department from January 2011 to December 2012 were collected.

View Article and Find Full Text PDF