98%
921
2 minutes
20
In order to explore the species composition, spatial distribution and relationship between the phytoplankton community and environmental factors in Lake Longhu, the phytoplankton community structures and environmental factors were investigated in July 2020. Clustering analysis (CA) and analysis of similarities (ANOSIM) were used to identify differences in phytoplankton community composition. Generalized additive model (GAM) and variance partitioning analysis (VPA) were further analyzed the contribution of spatial distribution and environmental factors in phytoplankton community composition. The critical environmental factors influencing phytoplankton community were identified using redundancy analysis (RDA). The results showed that a total of 68 species of phytoplankton were found in 7 phyla in Lake Longhu. Phytoplankton density ranged from 4.43 × 10 to 2.89 × 10 ind./L, with the average density of 2.56 × 10 ind./L; the biomass ranged from 0.58-71.28 mg/L, with the average biomass of 29.38 mg/L. , and contributed more to the total density, while and contributed more to the total biomass. The CA and ANOSIM analysis indicated that there were obvious differences in the spatial distribution of phytoplankton communities. The GAM and VPA analysis demonstrated that the phytoplankton community had obvious distance attenuation effect, and environmental factors had spatial autocorrelation phenomenon, which significantly affected the phytoplankton community construction. There were significant distance attenuation effects and spatial autocorrelation of environmental factors that together drove the composition and distribution of phytoplankton community structure. In addition, pH, water temperature, nitrate nitrogen, nitrite nitrogen and chemical oxygen demand were the main environmental factors affecting the composition of phytoplankton species in Lake Longhu.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585031 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1267299 | DOI Listing |
Mar Environ Res
September 2025
Department of Ocean Integrated Science, Chonnam National University, 59626, Yeosu, Republic of Korea. Electronic address:
Marine heatwaves (MHWs) are increasing in frequency and intensity worldwide, significantly impacting marine ecosystems. However, studies on phytoplankton community changes in coastal waters under such conditions remain. In the summer of 2024, an extreme high-temperature event (>28 °C) occurred in the southern coastal waters of Korea, providing an opportunity to investigate phytoplankton community dynamics under thermal stress.
View Article and Find Full Text PDFNew Phytol
September 2025
Department of Botany, Faculty of Science, Charles University, Benátská 2, 12800, Praha 2, Czech Republic.
Phytoplankton, as primary producers, play a key role in aquatic ecosystems. Their community turnover is shaped by morphological traits that enable adaptation to diverse abiotic and biotic factors. Yet, the temporal scale of these dynamics remains poorly understood due to limited high-frequency sampling studies.
View Article and Find Full Text PDFBiology (Basel)
July 2025
College of Life Sciences and Technology, Tarim Research Center of Rare Fishes, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Tarim University, Alar 843300, China.
Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China.
View Article and Find Full Text PDFFront Microbiol
August 2025
Laboratory of Water Ecological Health and Environmental Safety, School of Life Sciences, Chongqing Normal University, Chongqing, China.
River planktonic microeukaryotes (phytoplankton and zooplankton) underpin aquatic ecosystem function, yet how environmental change regulates their biodiversity via assembly mechanisms remains poorly understood. Using eDNA metabarcoding along China's Beipan River, partitioned by a barrier dam into environmentally heterogeneous upstream and stable downstream regions, we assessed plankton diversity and the roles of dispersal and environmental selection. Phytoplankton exhibited higher alpha- and beta-diversity than zooplankton, attributed to stronger dispersal but weaker selection.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China.
Eukaryotic harmful and toxic microalgae, along with their derived toxins, pose significant threats to seafood safety, human health, and marine ecosystems. Here, we developed a novel full-length 18S rRNA database for harmful and toxic microalgae and combined metabarcoding with toxin analyses to investigate the ecological patterns of phytoplankton communities and the underlying mechanism of associated toxic microalgae risks. We identified 79 harmful and toxic species in Hong Kong's coastal waters, with dinoflagellates and diatoms representing the majority of toxic and harmful taxa, respectively.
View Article and Find Full Text PDF