Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir.

Biology (Basel)

College of Life Sciences and Technology, Tarim Research Center of Rare Fishes, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Tarim University, Alar 843300, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China. A total of 209 phytoplankton species were identified, with Bacillariophyta, Chlorophyta, and Cyanobacteria comprising over 92% of the community, indicating an oligarchic dominance pattern. The decoupling between numerical dominance (diatoms) and biomass dominance (cyanobacteria) revealed functional differentiation and ecological complementarity among major taxa. Through multivariate analyses, including Mantel tests, principal component analysis (PCA), and redundancy analysis (RDA), we found that phytoplankton community structures at different ecological levels responded distinctly to environmental gradients. Oxidation-reduction potential (ORP), dissolved oxygen (DO), and mineralization parameters (EC, TDS) were key drivers of morphological operational taxonomic unit (MOTU). In contrast, dominant species (SP) were more responsive to salinity and pH. A seasonal analysis demonstrated significant shifts in correlation structures between summer and autumn, reflecting the regulatory influence of the climate on redox conditions and nutrient solubility. Machine learning using the random forest model effectively identified core taxa (e.g., MOTU1 and SP1) with strong discriminatory power, confirming their potential as bioindicators for water quality assessments and the early warning of ecological shifts. These core taxa exhibited wide spatial distribution and stable dominance, while localized dominant species showed high sensitivity to site-specific environmental conditions. Our findings underscore the need to integrate taxonomic resolution with functional and spatial analyses to reveal ecological response mechanisms in arid-zone reservoirs. This study provides a scientific foundation for environmental monitoring, water resource management, and resilience assessments in climate-sensitive freshwater ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383667PMC
http://dx.doi.org/10.3390/biology14080914DOI Listing

Publication Analysis

Top Keywords

environmental drivers
8
artificial reservoirs
8
phytoplankton community
8
ili region
8
dominant species
8
core taxa
8
environmental
5
ecological
5
phytoplankton
4
drivers phytoplankton
4

Similar Publications

The effects of cadmium and high fructose diet on metabolic and reproductive health in female CD-1 mice.

Food Chem Toxicol

September 2025

Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC. Electronic address:

Background: Evaluation of the combined effects of endocrine-disrupting chemicals and dietary factors provides critical information for cumulative health risk assessment. Herein, we investigated the effects of cadmium (Cd) exposure and high fructose (HFr) diet on metabolic and reproductive health in female mice.

Methods: Female CD-1 mice were exposed to cadmium chloride (CdCl) (0.

View Article and Find Full Text PDF

Quantitative analysis of PM oxidative potential: Insights into the role of organic compounds and sources.

J Hazard Mater

August 2025

Department of Environmental Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea; Interdisciplinary Program in Earth Environmental System Science & Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea; Gangwon particle pollution res

This study evaluates the oxidative potential (OP) of PM and its chemical drivers across three contrasting environments in South Korea: a residential area, a cement factory, and a charcoal kiln facility. Mass-normalized OP (OPm, reflecting intrinsic particle reactivity) ranged from 9.5 to 13.

View Article and Find Full Text PDF

Preservatives induced succession of microbial communities and proliferation of resistance genes within biofilm and plastisphere in sulfur autotrophic denitrification system.

J Hazard Mater

September 2025

National Engineering Lab for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.

Methylparaben (MeP), Benzethonium chloride (BZC) and microplastics (MPs) as emerging contaminants are frequently detected in the environment. Furthermore, MPs can be colonized by microorganisms to form a unique ecological niche known as the "plastisphere". In this study, three biofilm-based sulfur autotrophic denitrification (SAD) reactors were established, which were exposed to 0.

View Article and Find Full Text PDF

Geographical flavor fingerprinting of morels: integrated analysis of volatile and non-volatile components with environmental drivers across Chinese regions.

Food Chem

August 2025

Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China. Electronic address:

Morel (Morchella spp.) is highly valued and increasingly widely cultivated in China. However, due to the limited analysis of its flavor components and origin, its full utilization is restricted.

View Article and Find Full Text PDF

Biochar amendment improves Morchella sextelata yield by enhancing soil NO-N availability and increasing the diversity while decreasing the absolute abundance of fungal community.

Microbiol Res

August 2025

Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China; The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Black morel (Morchella sextelata) is widely regarded as a post-fire mushroom because of its prolific fruiting in post-fire forest soils enriched with charcoal. Intriguingly, artificial cultivation of M. sextelata often incorporates biochar as a soil amendment to enhance yield, although the underlying physicochemical and ecological mechanisms remain unclear.

View Article and Find Full Text PDF