98%
921
2 minutes
20
Brain takes up approximately 20% of the total body oxygen and glucose consumption due to its relatively high energy demand. Glucose is one of the major sources to generate ATP, the process of which can be realized via glycolysis, oxidative phosphorylation, pentose phosphate pathways and others. Lactate serves as a hub molecule amid these metabolic pathways, as it may function as product of glycolysis, substrate of a variety of enzymes and signal molecule. Thus, the roles of lactate in central nervous system (CNS) diseases need to be comprehensively elucidated. Histone lactylation is a novel lactate-dependent epigenetic modification that plays an important role in immune regulation and maintaining homeostasis. However, there's still a lack of studies unveiling the functions of histone lactylation in the CNS. In this review, we first comprehensively reviewed the roles lactate plays in the CNS under both physiological and pathological conditions. Subsequently, we've further discussed the functions of histone lactylation in various neurological diseases. Furthermore, future perspectives regarding histone lactylation and its therapeutic potentials in stroke are also elucidated, which may possess potential clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605911 | PMC |
http://dx.doi.org/10.1186/s12974-024-03303-4 | DOI Listing |
Front Endocrinol (Lausanne)
September 2025
Department of Orthopedics I, Second Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.
Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Department of General Surgery, Jiangnan University Medical Center, Wuxi, PR China. Electronic address:
In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.
View Article and Find Full Text PDFOncol Rep
November 2025
Department of Lung Oncology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China.
Lung cancer is a common malignancy that poses risks to human health and quality of life. The primary treatment options currently available include surgery, chemotherapy and radiotherapy. However, the aggressive metastatic nature of the disease combined with the development of drug and radiation resistance results in suboptimal survival outcomes.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Lactate, as an end-product of glycolysis, has been considered as a metabolic waste that participates in a few physiological functions. Recently, a novel study by Zhao's laboratory reported that lactate can serve as an epigenetic modification substrate, causing histone or nonhistone lysine residues to undergo lactylation, which then regulates gene transcription, translation, and protein function. Subsequent studies confirmed that lactylation plays an important role in a series of physiological and pathological processes, such as inflammation, cancer, and other biological processes.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Neurosurgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou 412000, Hunan, China. Electronic address:
Glioblastoma (GBM) stands as one of the most formidable and deadly brain cancers, with temozolomide (TMZ) established as the primary chemotherapeutic agent. However, over 50 % of patients showed innate or acquired resistance. Sirtuins, a family of NAD-dependent deacetylases, have gained recognition as key regulators in shaping epigenetic landscapes and influencing chemoresistance across various cancers, yet their specific contribution to TMZ resistance in GBM has remained largely unexplored.
View Article and Find Full Text PDF