Publications by authors named "Yupeng Zhao"

In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.

View Article and Find Full Text PDF

Clearance and adaptation to reactive oxygen species (ROS) are crucial for cell survival. As in other eukaryotes, the catalases in Neurospora crassa are the main enzymes responsible for ROS clearance, primarily by decomposing hydrogen peroxide (H₂O₂), a major type of ROS. Their expression is tightly regulated by growth and environmental conditions.

View Article and Find Full Text PDF

Background: HKDC1 (Hexokinase Domain Containing 1), a recently identified member of the hexokinase family, has emerged as a potential oncogene with significant involvement in tumor progression, immune evasion, and cellular metabolism.

Methods: A pan-cancer analysis was performed using TCGA, GTEx, and TIP databases. In vitro experiments, including qPCR, Western blot, CCK-8 assay, scratch assay, colony formation, and transwell assays, were conducted to evaluate HKDC1's role in cancer.

View Article and Find Full Text PDF

Accumulating evidence suggests that NLRP3-mediated alveolar macrophage (AM) pyroptosis and subsequent high mobility group box protein 1 (HMGB1) secretion play significant roles in the pathogenesis of acute respiratory distress syndrome (ARDS). Nrf2 has been shown to be individually involved in regulating pyroptosis. In this study, we investigate the ability of CDDO-imidazolide, a potent Nrf2 activator, to regulate AM pyroptosis and HMGB1 secretion in sepsis-associated ARDS, along with its underlying mechanism.

View Article and Find Full Text PDF

Currently, effective prediction models for patients with advanced and postoperative gastric cancer (GC) are lacking. Programmed cell death (PCD) plays a crucial role in the development and metastasis of malignant tumors. This study aimed to investigate the underlying PCD-related molecular mechanisms and develop predictive models for GC.

View Article and Find Full Text PDF

Background: Platinum was the first drug with proven activity against gastric cancer (GC), the combination with fluoropyrimidine is the standard first-line systemic therapy for patients of GC. However, a major cause of treatment failure still is the existence of drug resistance. The purpose of this study is to identify and validate the platinum-related genes in GC and to construct a multi-gene joint signature for predicting the prognosis of GC patients.

View Article and Find Full Text PDF

Background: The increased permeability of the blood-brain barrier (BBB) is a critical contributor to the high mortality following ischaemic stroke. However, the mechanisms regulating BBB integrity remain poorly understood. Leucine-rich repeat-containing 8A (LRRC8A) is a chloride channel critical for cellular volume homeostasis and plays a key role in regulating neuronal injury during ischaemia.

View Article and Find Full Text PDF

Micro-/nanobubble oxygenation irrigation, as a novel irrigation technique, has been widely utilized to enhance soil phosphorus availability and maize yield. Nevertheless, currently, most of the studies remain unclear about the precise mechanism through which micro-/nanobubble oxygenation improves soil phosphorus availability and maize yield. Therefore, we established two irrigation methods, conventional irrigation (CF) and micro-/nanobubble oxygenation irrigation (MB), to investigate the combined effects on enzyme activity, microbial communities, and soil phosphorus availability in the rhizosphere soil of maize.

View Article and Find Full Text PDF

In this study, the improvement effect of different organic substances on compacted cohesive soil in southern Xinjiang was discussed, with emphasis on the influence of different organic substances on soil chemical properties and microorganisms, so as to determine the best carbon source input and provide theoretical support for the rational utilization of organic materials in southern Xinjiang. Field experiments were conducted to evaluate the effects of farm fertilizer, biochar, commercial organic fertilizer, microbial fertilizer and mineral potassium humate on physical and chemical properties of viscous soil, agronomic properties and yield of cotton, with three gradients for each organic fertilizer. The results showed that: (1) all organic fertilizers improved soil structure, among which farm fertilizer significantly reduced soil bulk density and salinity, increased soil organic matter, total nitrogen and available nutrients, and thus increased cotton height, stem diameter and yield.

View Article and Find Full Text PDF

Ischemic stroke is a worldwide disease with high mortality and morbidity. Kv7/KCNQ channels are key modulators of neuronal excitability and microglia function, and activation of Kv7/KCNQ channels has emerged as a potential therapeutic avenue for ischemic stroke. In the present study, we focused on a new Kv7/KCNQ channel opener QO-83 on the stroke outcomes and its therapeutic potential.

View Article and Find Full Text PDF

The contradiction between increased irrigation demand and water scarcity in arid regions has become more acute for crops as a result of global climate change. This highlights the urgent need to improve crop water use efficiency. In this study, four irrigation volumes were established for drip-irrigated maize under plastic mulch: 2145 m ha (W1), 2685 m ha (W2), 3360 m ha (W3), and 4200 m ha (W4).

View Article and Find Full Text PDF

This study aimed to explore the combined effects of micro-nano bubble water drip irrigation and different phosphorus (P) application rates (P0: 0 kg·hm; P1: 86 kg·hm; P2: 172 kg·hm; P3: 258 kg·hm) on maize growth, soil phosphorus dynamics, and phosphorus use efficiency to optimize irrigation and P fertilizer use efficiency. Through a field column experiment, the impact of micro-nano bubble water drip irrigation on maize plant height, stem diameter, leaf SPAD values, biomass, and yield was evaluated. The results showed that (1) irrigation methods significantly affected maize growth indicators such as plant height, stem diameter, and root dry weight.

View Article and Find Full Text PDF

Purpose: This study aims to show the viability of conducting three-dimensional (3D) myocardial perfusion quantification covering the entire heart using both GRE and bSSFP sequences with hyperpolarized HP001.

Methods: A GRE sequence and a bSSFP sequence, both with a stack-of-spirals readout, were designed and applied to three pigs. The images were reconstructed using C coil sensitivity maps measured in a phantom experiment.

View Article and Find Full Text PDF
Article Synopsis
  • - Wetlands play a vital role in ecological services but face severe degradation due to factors like urbanization and land use change, impacting soil fungal communities whose responses are not well understood.
  • - The study employed high-throughput sequencing to assess soil fungi diversity and abundance across different degradation levels (undegraded, light, moderate, and severe) in the Songnen Plain's Halahai Nature Reserve while correlating these with soil properties.
  • - Results revealed that as wetland degradation increased, Ascomycota fungi flourished while Basidiomycota declined, with significant variations in soil nutrients, suggesting that soil water content and total nitrogen heavily influence fungal community structures.
View Article and Find Full Text PDF

Designing persistent dual-band afterglow materials with thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) contributed to solving the problems of homogenization and singularity in long afterglow materials. Here, six aryl acetonitrile (CBM) and aryl dicyanoaniline (AMBT) derivatives, used as host and guest materials respectively, were successfully designed and synthesized based on the isomerization effect. Among of them, 0.

View Article and Find Full Text PDF

Defect engineering is a key chemical tool to modulate the electronic structure and reactivity of nanostructured catalysts. Here, it is reported how targeted introduction of defect sites in a 2D palladium metallene nanostructure results in a highly active catalyst for the alkaline oxygen reduction reaction (ORR). A defect-rich WO and MoO modified Pd metallene (denoted: D-Pd M) is synthesized by a facile and scalable approach.

View Article and Find Full Text PDF

Water freely diffuses across cell membranes, making it suitable for measuring absolute tissue perfusion. In this study, we introduce an imaging method for conducting coronary artery angiography and quantifying myocardial perfusion across the entire heart using hyperpolarized water. H was hyperpolarized using dissolution dynamic nuclear polarization (dDNP) with UV-generated radicals.

View Article and Find Full Text PDF

In this study, polypropylene/halloysite nanotube (PP/HNT) composite separators were prepared by coating HNTs treated with hydrochloric acid (HCl) of different concentrations on both sides of a PP separator. The effect of HNTs treated with hydrochloric acid (HCl) of different concentrations on the properties of PP/HNT composite separators was investigated. The results indicate that the PP/HNT composite separator exhibits higher electrolyte uptake and wettability than a commercial PP separator, resulting in a better electrochemical performance in Li/LiFePO cells.

View Article and Find Full Text PDF

To explore the intrinsic mechanism of pure organic room temperature and clustering-induced phosphorescence and investigate mechanochromism and structural-function relationships, here, 4-(2-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lo-CzAD), 4-(3-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lm-CzAD), and 4-(4-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lp-CzAD) were designed and synthesized by choosing self-made carbazole and 3, 5-dicyanopyridine (DCP) unit as electron acceptor and electron donor in sequence. Compared with crystals Lm-CzAD and Lp-CzAD, crystal Lo-CzAD shows better room temperature phosphorescence (RTP) performance, with RTP lifetimes of 187.16 ms, as well as afterglows 1s, which are attributed to twisted carbazole unit and donor-acceptor (D-A) molecular conformation, big crystal density and spin orbit coupling constant ξ (S → T and S → T), as well as intermolecular H type stacking and small ξ (S → T).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between alternative splicing (AS) events and gastric cancer (GC), aiming to identify specific AS events that impact cancer occurrence and prognosis.* -
  • Using data from TCGA and SpliceSeq, researchers analyzed over 48,000 AS events across GC and normal samples, identifying 855 survival-associated AS events (SASEs) and developing a prognostic model highlighting the function of 17 hub genes.* -
  • Key findings reveal that high-risk groups have worse survival rates, with five significant genes (STAT3, RAD51B, SOCS2, POLE2, TSR1) confirmed to correlate with survival, and 19 drugs identified as sensitizing for high-risk patients.*
View Article and Find Full Text PDF

Natural polymer-based hydrogels have been wildly used in electronic skin, health monitoring and human motion sensing. However, the construction of hydrogel with excellent mechanical strength and electrical conductivity totally using natural polymers still faces many challenges. In this paper, gelatin and oxidized sodium carboxymethylcellulose were used to synthesize a double-network hydrogel through the dynamic Schiff base bonds.

View Article and Find Full Text PDF

Background: Given the intricate molecular complexities and heterogeneity inherent in T-cell immunotherapy of gastric cancer (GC), elucidative T-cell-related biomarkers were imperative needed for facilitating the prediction of GC patient prognosis and identify potential synergistic therapeutic targets.

Methods: We conducted COX regression analysis in TISIDB, TCGA-STAD, and GEO databases to identify 19 GC T-cell-mediated sensitivity tumor killing (TTK) genes (key GCTTKs). Based on key GCTTKs, we constructed two TTK patterns and analyzed their metabolic pathways, mutation features, clinical data distribution, immune cell infiltration, and prognosis.

View Article and Find Full Text PDF

The role of the Immunoglobulin Superfamily (IgSF) as adhesion molecules in orchestrating inflammation is pivotal, yet its specific involvement in gastric cancer (GC) remains unknown. We analyzed IgSF components and discerned conspicuously elevated VCAM1 expression in GC, correlating with a poor prognosis. Remarkably, VCAM1 enhances GC cell proliferation and migration by activating AKT-mTOR signaling.

View Article and Find Full Text PDF

The activation of molecular hydrogen is a key process in catalysis. Here, we demonstrate how polyoxometalate (POM)-based heterogeneous compounds functionalized with Platinum particles activate H by synergism between a hydrogen spillover mechanism and electron-proton transfer by the POM. This interplay facilitates the selective catalytic reduction of olefins and nitroarenes with high functional group tolerance.

View Article and Find Full Text PDF

Different chemoselectivities of phenols and thiophenols were observed in a TfO-promoted C3 functionalization of simple anthranils. The reaction of phenols and anthranils gives 3-aryl anthranils via a C-C bond formation, whereas thiophenols afford 3-thio anthranils through a C-S bond formation. Both reactions have a broad substrate scope and tolerate a wide range of functional groups, affording the corresponding products with specific chemoselectivity.

View Article and Find Full Text PDF