Synergistic Intramolecular Non-Covalent Interactions Enable Robust Pure-Blue TADF Emitters.

Adv Mater

Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stability-issues of organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) require further advancements, especially in pure-blue range of CIE < 0.20, existing a dilemma between color purity and device lifetime. Though improving bond-dissociation-energy (BDE) can effectively improve material intrinsic stability, strategies to simultaneously improve BDE and photophysical performances are still lacking. Herein, it is disclosed that synergistic intramolecular non-covalent interactions (Intra-NI) can achieve not only the highest C─N BDE among blue TADF materials, but enhanced molecular-rigidity, near-unity photoluminescent quantum yields and short delayed lifetime. Pure-blue TADF-OLEDs based on proof-of-concept TADF material realize high external-quantum-efficiency and record-high LT@500 cd m of 109 h with CIE = 0.16. Furthermore, deep-blue TADF-sensitized devices exhibit high LT@500 cd m of 81 h with CIE = 0.10. The findings provide new insight into the critical role of Intra-NI in OLED materials and open the way to tackling vexing stability issues for developing robust pure-blue organic emitters and other functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202407882DOI Listing

Publication Analysis

Top Keywords

synergistic intramolecular
8
intramolecular non-covalent
8
non-covalent interactions
8
robust pure-blue
8
interactions enable
4
enable robust
4
pure-blue
4
tadf
4
pure-blue tadf
4
tadf emitters
4

Similar Publications

Unveiling photophysical mechanisms of NIR-II AIE luminogens for multimodal imaging-navigated synergistic therapies.

Natl Sci Rev

August 2025

Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.

Multimodal phototheranostics has been recognized as one of the most momentous advances in cancer treatment. Of particular interest is a single molecular species simultaneously featuring in multiple imaging and synergistic phototherapies; the development of such a molecular species is nevertheless a formidably challenging task. Herein, we innovatively designed and synthesized three aggregation-induced emission (AIE)-active molecules with emission in the second near-infrared (NIR-II) window, by employing 10-indeno[1,2-][1,2,5]thiadiazolo[3,4-]quinoxalin-10-one as the electron acceptor, 4-(-butyl)--(4-(-butyl)phenyl)--phenylaniline as the electron donor, and different π-bridge moieties.

View Article and Find Full Text PDF

A thermostable paraoxonase (S3wahi-PON) from sp. strain S3wahi was recently characterised and shown to possess stability across a broad temperature range. This study expands upon the initial biochemical characterisation of S3wahi-PON by investigating the structural determinants and conformational adaptability that contribute to its thermostability, using an integrated approach that combines biophysical techniques and molecular dynamics (MD) simulations across a temperature range of 10 °C to 90 °C.

View Article and Find Full Text PDF

Calix[]azanediyldibenzoate: Intramolecular Hydrogen Bond-Assisted Synthesis, Acidichromism, and Oriented Self-Assembly.

Org Lett

September 2025

School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.

Here, intramolecular hydrogen bond (IMHBs)-induced rigidity is used for the first time to synthesize macrocyclic arenes. Calix[]azanediyldibenzoates (C[]A, where = 3, 4, or 5) are synthesized through a one-step condensation reaction between dimethyl 2,2'-azanediyldibenzoate and paraformaldehyde. Compared to the monomer, the macrocycles exhibit a fast and significant acidochromic response due to the intramolecular charge transfer that is boosted by the synergistic effect of their adsorption and protonation.

View Article and Find Full Text PDF

Multifunctional Binding Interface Drives Near-Unity CO Selectivity in Acidic CO Electrolysis.

Angew Chem Int Ed Engl

September 2025

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA.

The electrocatalytic carbon dioxide (CO) reduction is challenged by the parasitic hydrogen evolution reaction (HER) especially in acidic media. Here, we elaborate that redox-active isoindigo, acting as a multifunctional co-catalyst, can pre-activate CO-bound intermediates and suppress HER upon the synergistic effects of Lewis acid-base adduct formation, intramolecular hydrogen-bond interaction, and interfacial water structure modulation. Modifying a silver catalyst with isoindigo substantially decreases the energy barrier for CO-to-*COOH conversion, which is regarded as the potential-limiting step of carbon monoxide production.

View Article and Find Full Text PDF

Side-Chain Poly[2]rotaxane-Toughened Graphene Films.

ACS Macro Lett

September 2025

State Key Laboratory of Synergistic Chem-Bio Synthesis, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Graphene-based films are highly valued for their superior conductivity, thermal stability, and mechanical strength, yet their brittleness and low ductility limit their full potential. Current toughening strategies for graphene-based composites mainly focus on interfacial reinforcement between polymers and graphene substrates. However, research on energy dissipation arising from the intrinsic properties of polymers remains limited.

View Article and Find Full Text PDF