Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Uncontrolled bleeding in emergency situations is a great threat to both military and civilian lives, and an ideal hemostat for effectively controlling prehospital hemorrhage is urgently needed but still lacking. Although hemostatic hydrogels are promising for emergency hemostasis, they are currently challenged by either the mutual exclusion between a short gelation time and strong adhesive network or the insufficient functionality of ingredients and complicated operations for in situ curing. Herein, an extracellular matrix biopolymer-based and multifunctional hemostatic hydrogel that simultaneously integrates rapid thermoresponsive gelation, robust wet adhesion, and ease of use in emergencies is rationally engineered. This hydrogel can be conveniently used via simple injection and achieves instant sol-gel phase transition at body temperature. Its comprehensive performance could be facilely regulated by tuning the proportions of components, and the optimal performance (gelation time 6-8 s, adhesion strength 125 ± 3.6 kPa, burst pressure 282 ± 4.1 mmHg) is established due to the coordinated enhancement of the photo-cross-linking pretreatment and the hydrophilic-hydrophobic balance among various interactions in the hydrogel system. Additionally, it exhibits significant coagulation effect and enables effective hemostasis and wound healing . This work provides a promising platform for versatile applications of hydrogel-based materials, including emergency hemostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.3c00357DOI Listing

Publication Analysis

Top Keywords

emergency hemostasis
12
multifunctional hemostatic
8
hemostatic hydrogel
8
rapid thermoresponsive
8
thermoresponsive gelation
8
gelation robust
8
robust wet
8
wet adhesion
8
hydrophilic-hydrophobic balance
8
gelation time
8

Similar Publications

Introduction: Abdominal compartment syndrome (ACS) is a serious complication that can occur after endovascular aneurysm repair (EVAR) for ruptured abdominal aortic aneurysm (rAAA). Prompt recognition and appropriate management are crucial to improve patient outcomes.

Case Presentation: An octogenarian with an 11-cm rAAA underwent emergent EVAR due to cardiovascular instability.

View Article and Find Full Text PDF

The emergence of special scenarios involving small-sized penetrating wounds has imposed stricter performance requirements on shape-recovery hemostatic materials, particularly regarding their shape fixity and water-triggered shape recovery efficiency. Herein, an efficient shape-recovery sponge dressing with high shape fixity and high-speed liquid absorption, designated as CQT, was developed by integrating a sieve structure with the rough surface coating. The sieve structure, characterized by microporous structures on macroporous walls, enhanced the multi-level and connectivity of the overall pore network, which could improve compressive fixity via enhancing the energy dissipation required for rebound and enabled efficient shape recovery through augmented capillary action during fluid absorption.

View Article and Find Full Text PDF

Marine organism-inspired tough and adhesive patch based on thermosensitive quaternized chitin for tissue sealing/repair and hemostasis.

Carbohydr Polym

November 2025

Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China. Electronic address:

Tissue adhesives have emerged as a promising alternative to conventional sutures and staplers in the management of hemostasis, tissue defect sealing, and wound repair. However, the efficacy of current bio-adhesives in clinical practice is compromised by the limitations, including poor wet adhesion, inadequate mechanical strength, vulnerability to gastrointestinal fluids, and insufficient hemostatic performance. Herein, a marine organism-inspired tough and adhesive patch (MOTAP) was developed to address these challenges.

View Article and Find Full Text PDF

Amniotic fluid embolism (AFE) is a critical obstetric complication characterized by the entry of amniotic fluid and its components into maternal circulation during parturition, leading to acute cardiopulmonary failure, disseminated intravascular coagulation (DIC), and anaphylactic shock. Affected patients typically exhibit abrupt onset, rapid progression, and exceedingly high mortality. Early recognition and prompt intervention are pivotal in AFE management.

View Article and Find Full Text PDF

Clay-based hemostatic agents: Fabrication, mechanisms, and evidence.

Biomater Adv

August 2025

School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China. Electronic address:

Hemorrhagic control remains a serious concern in emergency medicine and combat trauma management, where achieving rapid hemostasis significantly impacts patient survival outcomes. While conventional interventions including direct manual compression and tourniquet application demonstrate clinical efficacy in routine scenarios, their limitations become apparent when managing catastrophic hemorrhage or anatomically complex injuries. Mineral-based hemostatic agents, particularly clay-derived rapid hemostats, have emerged as a promising therapeutic modality that synergizes ancestral wound management practices with contemporary material engineering.

View Article and Find Full Text PDF