98%
921
2 minutes
20
The biochemical composition of sweat is closely related to the human physiological state, which provides a favorable window for the monitoring of human health status, especially for the athlete. Herein, an ultra-simple strategy based on the surface-enhanced Raman scattering (SERS) technique for sweat analysis is established. Metal-phenolic network (MPN), an outstanding organic-inorganic hybrid material, is adopted as the reductant and platform for the in situ formation of Au-MPN, which displays excellent SERS activity with the limit of detection to 10 M for 4-mercaptobenzoic acid (4-MBA). As an ultrasensitive SERS sensor, Au-MPN is capable of discriminating the molecular fingerprints of sweat components acquired from a volunteer after exercise, such as urea, uric acid, lactic acid, and amino acid. For pH sensing, Au-MPN/4-MBA efficiently presents the pH values of the volunteer's sweat, which can indicate the electrolyte metabolism during exercise. This MPN-based SERS sensing strategy unlocks a new route for the real-time physiological monitoring of human health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458096 | PMC |
http://dx.doi.org/10.3390/nano12172977 | DOI Listing |
Food Res Int
November 2025
Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China. Electronic address:
Whey protein isolate (WPI) is an important food ingredient, but its high allergenicity limit its application. Recently, metal-phenolic networks (MPNs) have been shown to be effective in modifying proteins. The aim of this study was to evaluate the effects of MPNs formed from (-)-epigallocatechin-3-gallate (EGCG) and Fe on the structure, antibody-binding capacity, and functional properties of WPI.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, Shandong, China.
Adenoid cystic carcinoma (ACC) is a lethal salivary gland malignant neoplasm. Lung metastasis is the primary cause of mortality in ACC patients while there is no effective treatment available at present. In this study, a precise and biomimetic nanoplatform, CG/MC/U-M, is designed to combine cuproptosis, gas therapy and immunotherapy against metastatic adenoid cystic carcinoma.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
Correction for 'Dual drug-loaded metal-phenolic networks for targeted magnetic resonance imaging and synergistic chemo-chemodynamic therapy of breast cancer' by Li Xia , , 2024, , 6480-6491, https://doi.org/10.1039/D4TB00462K.
View Article and Find Full Text PDFBiomaterials
August 2025
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Cen
Dental tissue regeneration is often challenged by the hostile inflammatory microenvironment and the dysfunction of reparative cells due to oxidative stress. This study presents a reactive oxygen species (ROS)-scavenging nanozyme induced by ligand-to-metal charge transfer, engineered as a multifunctional capping material through the in situ growth of copper-gallate (CuGA) on hydroxyapatite nanofibers (HAFs). The obtained CuGA@HAF demonstrates superior ROS-scavenging capacity through its multi-enzyme mimetic activity, effectively rescuing the function of dental pulp stem cells (DPSCs) under oxidative stress by restoring mitochondrial homeostasis.
View Article and Find Full Text PDFAdv Mater
September 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Glucose consumption by tumors induces metabolic restriction of T cells, which results in immune evasion and tumor progression. Regulating cellular metabolism represents a promising strategy to enhance cancer immunotherapy; however, redirecting glucose utilization from tumor cells to T cells is challenging. Herein, the activation of cytotoxic T cells using engineered peptide coacervates (PCs) containing interferon alpha (IFNα) and membranized with metal-phenolic networks (MPNs) (PC-IFNα@MPNs), which promote glucose uptake and glycolysis, is reported.
View Article and Find Full Text PDF