Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microorganisms play a critical role in the process of nitrogen removal in aquatic environment, which is regulated by multiple environmental factors. As a high-altitude region, the Qinghai-Tibet Plateau has unique composition of bacterial communities due to its unique geographical conditions, which may affect the nitrogen conversion of Plateau rivers. However, the regulation of nitrogen removal by environmental factors and bacterial community in high-altitude rivers has been rarely reported. This study investigated denitrification, anammox, and dissimilatory nitrate reduction to ammonium rates as well as the community of bacteria and denitrifiers in the Yarlung Zangbo River. The results showed that denitrification was the dominant nitrate removal process. Redundancy analysis revealed that environmental factors including suspended particulate matter, chemical oxygen demand, dissolved oxygen, nitrogen and phosphorus content, electrical conductivity, and pH explained a large amount of the variance in bacterial community. Denitrifiers carrying nitrite reductase-related gene were an important driver of denitrification in the Yarlung Zangbo River. The low water temperature brought by high altitude significantly reduced the denitrification rate. The cascade dams on the river affected the particle size distribution of sediment, changed the community composition of bacteria and denitrifying bacteria, and increased the denitrification rate in the downstream. Our findings highlight that nitrogen removal processes in high-altitude rivers are jointly regulated by environmental and anthropogenic factors through shaping denitrifier abundance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-21498-yDOI Listing

Publication Analysis

Top Keywords

nitrogen removal
16
bacterial community
12
yarlung zangbo
12
zangbo river
12
environmental factors
12
environmental anthropogenic
8
anthropogenic factors
8
high-altitude rivers
8
denitrification rate
8
nitrogen
6

Similar Publications

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF

Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.

View Article and Find Full Text PDF

Microplastics (MPs) and the plastisphere they form pose substantial ecological risks in aquatic environments and wastewater treatment processes. As a unique niche, the evolution of plastisphere in anaerobic ammonium oxidation (anammox) systems remains poorly understood. This study investigated the physicochemical evolution of polyethylene terephthalate (PET) MPs and microbial succession within the plastisphere during a 30-day incubation with anammox granular sludge.

View Article and Find Full Text PDF

Self-regulating adaptability of biofilm microbiomes enhances manganese and ammonia removal in microbial electrochemical filters under dioxane exposure.

J Hazard Mater

September 2025

State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Understanding the stability and assemblage of biofilm microbiomes under oligotrophic conditions is critical for improving groundwater bioremediation. In this study, a novel microbial electrochemical filter (MEF) was developed to explore the impact of weak electrical stimulation on functional adaptability of biofilms under oligotrophic and 1,4-dioxane exposure conditions. Under 20 mg/L 1,4-dioxane stress, the MEF achieved 94.

View Article and Find Full Text PDF

Beyond top-hit nontarget screening: Diagnostic fragment analysis reveals nitrogen-containing heterocycles in iron and steel industry wastewater.

J Hazard Mater

September 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China. Electronic address: wlsu

Nitrogen-containing heterocyclic compounds (NHCs), widely present in industrial wastewater, pose significant environmental and health risks, yet their identification and characterization remain poorly understood. Herein, we developed a diagnostic fragment list comprising 20 nitrogen-containing fragments for NHCs, by integrating chemical information from Pubchem with the NIST mass spectral library. Leveraging this list, we employed a diagnostic fragment-assisted nontarget screening approach and identified 151 NHCs in iron and steel industry wastewater.

View Article and Find Full Text PDF