98%
921
2 minutes
20
Oxidative stress represents a common issue in most neurological diseases, causing severe impairments of neuronal cell physiological activity that ultimately lead to neuron loss of function and cellular death. In this work, lipid-coated polydopamine nanoparticles (L-PDNPs) are proposed both as antioxidant and neuroprotective agents, and as a photothermal conversion platform able to stimulate neuronal activity. L-PDNPs showed the ability to counteract reactive oxygen species (ROS) accumulation in differentiated SH-SY5Y, prevented mitochondrial ROS-induced dysfunctions and stimulated neurite outgrowth. Moreover, for the first time in the literature, the photothermal conversion capacity of L-PDNPs was used to increase the intracellular temperature of neuron-like cells through near-infrared (NIR) laser stimulation, and this phenomenon was thoroughly investigated using a fluorescent temperature-sensitive dye and modeled from a mathematical point of view. It was also demonstrated that the increment in temperature caused by the NIR stimulation of L-PDNPs was able to produce a Ca influx in differentiated SH-SY5Y, being, to the best of our knowledge, the first example of organic nanostructures used in such an approach. This work could pave the way to new and exciting applications of polydopamine-based and of other NIR-responsive antioxidant nanomaterials in neuronal research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009471 | PMC |
http://dx.doi.org/10.1021/acsami.0c05497 | DOI Listing |
Int J Pharm X
June 2025
Medical School, Southeast University, Nanjing 210009, China.
This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.
To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China.
Electrical deep brain stimulation is effective for epilepsy suppression, but will lead to neural tissue damage and inflammation due to implantation of electrodes and a pulse generator. Transcranial magnetic and transcranial ultrasound stimulation cannot directly generate effective electrical signals in deep brain regions. Here, the use of piezoelectric nanoparticles is proposed as wireless nanostimulators for deep brain electrical stimulation and minimally invasive suppression of epilepsy.
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
Salmonella typhimurium (S. typhimurium) A dual-mode colorimetric/photothermal immunochromatographic strip (ICS) employing hollow polydopamine nanoparticles (h-PDA) is reported for the ultrasensitive detection of Salmonella typhimurium (S. typhimurium).
View Article and Find Full Text PDFAtherosclerosis (AS) is a significant contributor to cardiovascular events. Recent studies have demonstrated that ferroptosis of foam cells is a significant driver of AS. Nevertheless, insights into the precise antiferroptosis therapies remain limited.
View Article and Find Full Text PDF