Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.5 via incubation, and modifying AS1411 aptamer onto MPDA via a covalent chemical reaction. The NPs were characterized using techniques such as ultra-micro spectrophotometry, Fourier transform infrared spectroscopy, and transmission electron microscopy. Target-specific uptake and cell-killing assays were utilized to evaluate AMLC-mediated synergistic therapy while using Western blotting and immunofluorescence to confirm the underlying mechanism. Consequently, the nanoparticles (NPs) were successfully synthesized, demonstrating excellent solvent solubility and stability, with controlled drug release achieved in acidic environments (maximum release efficiency≈80 %). In vitro and in vivo studies revealed that these NPs could more effectively target hepatocellular carcinoma (HCC) cells, enhancing the targeting capability of lenvatinib. Under near-infrared (NIR) laser irradiation, the targeted photothermal therapy (PTT) exhibited significantly improved anticancer efficacy, with AMCL+PTT treatment resulting in up to 76 % tumor volume reduction‌ ( < 0.01). The study demonstrates that AMLC, a multifunctional nano-delivery system, significantly enhances Lenvatinib's tumor-targeting capacity while exhibiting excellent biocompatibility. Combined with photothermal therapy (PTT), it demonstrates potent antitumor efficacy, showing promising clinical translation potential for hepatocellular carcinoma (HCC) therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416090PMC
http://dx.doi.org/10.1016/j.ijpx.2025.100335DOI Listing

Publication Analysis

Top Keywords

photothermal therapy
12
hepatocellular carcinoma
12
mesoporous polydopamine
8
targeted photothermal
8
nanoparticles nps
8
carcinoma hcc
8
therapy ptt
8
therapy
5
aptamer-conjugated mesoporous
4
polydopamine formulation
4

Similar Publications

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

Corrigendum to 'Ultrathin chalcogenide nanosheets for photoacoustic imaging-guided synergistic photothermal/gas therapy' [Biomaterials 273 (2021) 120807].

Biomaterials

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China. Electronic address:

View Article and Find Full Text PDF

Photothermal/GSH-dual-responsive organic quantum dots enabling traceable DNA delivery.

Int J Biol Macromol

September 2025

School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.

View Article and Find Full Text PDF

PEGylated dendrimers for precision cancer therapy: Advances in tumor targeting, drug delivery, and clinical translation.

Biomater Adv

September 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF