Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Remane's Artenminimum at the horohalinicum is a fundamental concept in ecology to describe and explain the distribution of organisms along salinity gradients. However, a recent metadata analysis challenged this concept for protists, proposing a species maximum in brackish waters. Due to data bias, this literature-based investigation was highly discussed. Reliable data verifying or rejecting the species minimum for protists in brackish waters were critically lacking. Here, we sampled a pronounced salinity gradient along a west-east transect in the Baltic Sea and analysed protistan plankton communities using high-throughput eDNA metabarcoding. A strong salinity barrier at the upper limit of the horohalinicum and 10 psu appeared to select for significant shifts in protistan community structures, with dinoflagellates being dominant at lower salinities, and dictyochophytes and diatoms being keyplayers at higher salinities. Also in vertical water column gradients in deeper basins (Kiel Bight, Arkona and Bornholm Basin) appeared salinity as significant environmental determinant influencing alpha- and beta-diversity patterns. Importantly, alpha-diversity indices revealed species maxima in brackish waters, that is, indeed contrasting Remane's Artenminimum concept. Statistical analyses confirmed salinity as the major driving force for protistan community structuring with high significance. This suggests that macrobiota and microbial eukaryotes follow fundamentally different rules regarding diversity patterns in the transition zone from freshwater to marine waters.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.14502DOI Listing

Publication Analysis

Top Keywords

brackish waters
12
macrobiota microbial
8
microbial eukaryotes
8
protistan plankton
8
species maximum
8
transition zone
8
baltic sea
8
remane's artenminimum
8
protistan community
8
salinity
5

Similar Publications

Marine organism-inspired tough and adhesive patch based on thermosensitive quaternized chitin for tissue sealing/repair and hemostasis.

Carbohydr Polym

November 2025

Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China. Electronic address:

Tissue adhesives have emerged as a promising alternative to conventional sutures and staplers in the management of hemostasis, tissue defect sealing, and wound repair. However, the efficacy of current bio-adhesives in clinical practice is compromised by the limitations, including poor wet adhesion, inadequate mechanical strength, vulnerability to gastrointestinal fluids, and insufficient hemostatic performance. Herein, a marine organism-inspired tough and adhesive patch (MOTAP) was developed to address these challenges.

View Article and Find Full Text PDF

Transcriptomic Analysis of Litopenaeus vannamei: Understanding Salinity Adaptation Mechanisms in Freshwater Environments.

Mar Biotechnol (NY)

September 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.

Litopenaeus vannamei exhibits strong salinity adaptation; however, its survival and growth are significantly reduced in freshwater environments. To investigate the response mechanisms of L. vannamei to freshwater conditions, gill tissues from shrimp cultured for 30 days in both freshwater and seawater environments were used as experimental material in this study.

View Article and Find Full Text PDF

Due to climate change, sea ice more commonly retreats over the shelf breaks in the Arctic Ocean, impacting sea ice-pelagic-benthic coupling in the deeper basins. Nitrogen fixation (the reduction of dinitrogen gas to bioavailable ammonia by microorganisms called diazotrophs) is reported from Arctic shelf sediments but is unknown from the Arctic deep sea. We sampled five locations of deep-sea (900-1500 m) surface sediments in the central ice-covered Arctic Ocean to measure potential nitrogen fixation through long-term (> 280 days) stable-isotope (N) incubations and to study diazotroph community composition through amplicon sequencing of the functional marker gene nifH.

View Article and Find Full Text PDF

Taurine Supplementation Enhances the Resistance of Postlarvae to Low-Salinity Stress.

Biology (Basel)

August 2025

Key Laboratory of Aquacultural Facility Engineering (Ministry of Agriculture and Rural Affairs), College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.

In aquaculture, Pacific white shrimp () growth in low-salinity waters is limited by osmoregulatory stress; therefore, improving resistance to low-salinity stress via nutritional modulation is key. In the present study, shrimp postlarvae were provided with a taurine supplement under low-salinity stress, and then the survival rate, the histology, the Na/K-ATPase (NKA) expression pattern and transcriptomic sequencing were investigated to evaluate the postlarval responses. The results showed that the postlarva survival rate in low-salinity water was only 61.

View Article and Find Full Text PDF

Marine heatwaves are intensifying due to global warming and increasingly drive mass mortality events in shallow benthic ecosystems. Marine invertebrates host diverse microbial communities that contribute to their health and resilience, yet microbiome responses under thermal stress remain poorly characterised across most taxa. Here, we characterise the microbiome composition in colonies of the common Mediterranean bryozoan Myriapora truncata at two depths (13 and 17 m) following the extreme 2022 marine heatwave.

View Article and Find Full Text PDF