Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Due to climate change, sea ice more commonly retreats over the shelf breaks in the Arctic Ocean, impacting sea ice-pelagic-benthic coupling in the deeper basins. Nitrogen fixation (the reduction of dinitrogen gas to bioavailable ammonia by microorganisms called diazotrophs) is reported from Arctic shelf sediments but is unknown from the Arctic deep sea. We sampled five locations of deep-sea (900-1500 m) surface sediments in the central ice-covered Arctic Ocean to measure potential nitrogen fixation through long-term (> 280 days) stable-isotope (N) incubations and to study diazotroph community composition through amplicon sequencing of the functional marker gene nifH. We measured low but detectable nitrogen fixation rates at the Lomonosov Ridge (0.6 pmol N g day) and the Morris Jessup Rise (0.4 pmol N g day). Nitrogen fixation was observed in sediments with the lowest organic matter content and bacterial abundance, and where sulphate-reducers like Desulfuromonadia and Desulfosporosinus sp. were prominent. Most nifH genes were distantly related to known diazotrophs. In this study, we show a potential for nitrogen fixation in Arctic bathypelagic sediments, considerably extending the known biome of marine nitrogen fixation. It raises the question of the significance of low but potentially widespread nitrogen fixation in deep-sea sediments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410090PMC
http://dx.doi.org/10.1111/1758-2229.70173DOI Listing

Publication Analysis

Top Keywords

nitrogen fixation
32
arctic ocean
12
nitrogen
8
ice-covered arctic
8
potential nitrogen
8
fixation
7
arctic
6
sediments
5
fixation potential
4
potential bathypelagic
4

Similar Publications

Antiferroelectric SnO Network with Amorphous Surface for Electrochemical N Fixation.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.

Electrochemical nitrogen fixation-a sustainable pathway for converting abundant N into NH using renewable energy-holds transformative potential for revolutionizing artificial nitrogen cycles. Nevertheless, even the state-of-the-art catalytic systems also suffer from inadequate N adsorption capacity, which critically limits ammonia production rates and Faradaic efficiency (FE). To overcome this bottleneck, we strategically leveraged the antiferroelectric properties of SnO to establish dipole-dipole interactions with N molecules, synergistically enhancing both N adsorption and activation kinetics.

View Article and Find Full Text PDF

Understanding the molecular basis of regulated nitrogen (N) fixation is essential for engineering N-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability.

View Article and Find Full Text PDF

Self-regulating adaptability of biofilm microbiomes enhances manganese and ammonia removal in microbial electrochemical filters under dioxane exposure.

J Hazard Mater

September 2025

State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Understanding the stability and assemblage of biofilm microbiomes under oligotrophic conditions is critical for improving groundwater bioremediation. In this study, a novel microbial electrochemical filter (MEF) was developed to explore the impact of weak electrical stimulation on functional adaptability of biofilms under oligotrophic and 1,4-dioxane exposure conditions. Under 20 mg/L 1,4-dioxane stress, the MEF achieved 94.

View Article and Find Full Text PDF

Climate change is challenging agriculture and food security due to the limited adaptability of domesticated crops. While plant range shifts along latitudinal and altitudinal gradients are well-documented, their impacts on belowground microbial communities and plant adaptability remain poorly understood. Vitis vinifera subsp.

View Article and Find Full Text PDF

Legumes form symbioses with nitrogen-fixing bacteria, well studied metabolically but less so in terms of respiration. Symbiotic nitrogen fixation demands high respiratory ATP and carbon skeletons, linking nitrogen assimilation and both NADH- and ATP-dependent process to mitochondrial respiration. The plant mitochondrial electron transport chain contains two terminal oxidases that differentially fractionate against O, providing estimations in vivo of the energy efficiency of respiration.

View Article and Find Full Text PDF