Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Marine heatwaves are intensifying due to global warming and increasingly drive mass mortality events in shallow benthic ecosystems. Marine invertebrates host diverse microbial communities that contribute to their health and resilience, yet microbiome responses under thermal stress remain poorly characterised across most taxa. Here, we characterise the microbiome composition in colonies of the common Mediterranean bryozoan Myriapora truncata at two depths (13 and 17 m) following the extreme 2022 marine heatwave. Despite no visible necrosis, microbial communities at both depths exhibited shifts indicative of thermal stress, including the reduced presence of potential core microbial members. Colonies from the shallower, warmer depth showed higher alpha diversity and reduced abundance of key functional genera compared to deeper colonies, suggesting early dysbiosis. These results highlight that M. truncata-though visually unaffected-undergoes sublethal microbiome alterations under thermal stress. This study provides the first characterisation of a bryozoan microbiome after a marine heatwave and highlights the potential of host-associated microbial communities as early bioindicators of invertebrate stress in a warming ocean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409650PMC
http://dx.doi.org/10.1111/1758-2229.70185DOI Listing

Publication Analysis

Top Keywords

marine heatwave
12
microbial communities
12
thermal stress
12
microbiome composition
8
common mediterranean
8
mediterranean bryozoan
8
microbiome
5
marine
5
composition common
4
bryozoan unprecedented
4

Similar Publications

Marine heatwaves (MHWs) are increasing in frequency and intensity worldwide, significantly impacting marine ecosystems. However, studies on phytoplankton community changes in coastal waters under such conditions remain. In the summer of 2024, an extreme high-temperature event (>28 °C) occurred in the southern coastal waters of Korea, providing an opportunity to investigate phytoplankton community dynamics under thermal stress.

View Article and Find Full Text PDF

Marine heatwaves are intensifying due to global warming and increasingly drive mass mortality events in shallow benthic ecosystems. Marine invertebrates host diverse microbial communities that contribute to their health and resilience, yet microbiome responses under thermal stress remain poorly characterised across most taxa. Here, we characterise the microbiome composition in colonies of the common Mediterranean bryozoan Myriapora truncata at two depths (13 and 17 m) following the extreme 2022 marine heatwave.

View Article and Find Full Text PDF

Short-term marine heatwaves have a limited impact on the lignocellulose of Thalassia hemprichii seagrass plant.

Mar Pollut Bull

September 2025

State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sanya National Marine Ecosyst

Short-term marine heatwaves, driven by global climate change, frequently occur in coastal areas and increasingly threaten seagrass meadows by raising temperatures, which impair their ecological functions. Lignocellulose, a key component of plant cell walls, is crucial for maintaining plant morphology and resilience. However, empirical evidence on the response of seagrass lignocellulose to short-term marine heatwaves is limited.

View Article and Find Full Text PDF

Complex and lasting impacts of heatwaves on life-history traits and fitness in Daphnia magna.

J Exp Biol

September 2025

School of Energy and Environment and State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong, China.

Rapid climatic fluctuations, such as heatwaves, are key drivers of ecological disruption and pose significant physiological challenges to ectothermic organisms, yet their capacity for short- or long-term adaptation and transgenerational effects remain poorly understood. Using the model freshwater zooplankton Daphnia magna, we experimentally tested the physiological resilience, acclimation, and evolutionary responses in D. magna across multiple generations under simulated heatwave conditions.

View Article and Find Full Text PDF

Heat stress can disrupt acid-base homeostasis in reef-building corals and other tropical cnidarians, often leading to cellular acidosis that can undermine organismal function. Temperate cnidarians experience a high degree of seasonal temperature variability, leading us to hypothesize that temperate taxa have more thermally robust pH homeostasis than their tropical relatives. To test this, we investigated how elevated temperature affects intracellular pH and calcification in the temperate coral .

View Article and Find Full Text PDF