Catestatin, a chromogranin A-derived peptide, is sympathoinhibitory and attenuates sympathetic barosensitivity and the chemoreflex in rat CVLM.

Am J Physiol Regul Integr Comp Physiol

Australian School of Advanced Medicine, Macquarie University, North Ryde, NSW, Australia.

Published: February 2012


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypertension is a major cause of morbidity. The neuropeptide catestatin [human chromogranin A-(352-372)] is a peptide product of the vesicular protein chromogranin A. Studies in the periphery and in vitro studies show that catestatin blocks nicotine-stimulated catecholamine release and interacts with β-adrenoceptors and histamine receptors. Catestatin immunoreactivity is present in the rostral ventrolateral medulla (RVLM), a key site for blood pressure control in the brain stem. Recently, we reported that microinjection of catestatin into the RVLM is sympathoexcitatory and increases barosensitivity. Here, we report the effects of microinjection of catestatin (1 mM, 50 nl) into the caudal ventrolateral medulla (CVLM) in urethane-anesthetized, bilaterally vagotomized, artificially ventilated Sprague-Dawley rats (n = 8). We recorded resting arterial pressure, splanchnic sympathetic nerve activity, phrenic nerve activity, heart rate, and measured cardiovascular homeostatic reflexes. Homeostatic reflexes were evaluated by measuring cardiovascular responses to carotid baroreceptor and peripheral chemoreceptor activation. Catestatin decreased basal levels of arterial pressure (-23 ± 4 mmHg), sympathetic nerve activity (-26.6 ± 5.7%), heart rate (-19 ± 5 bpm), and phrenic nerve amplitude (-16.8 ± 3.3%). Catestatin caused a 15% decrease in phrenic inspiratory period (T(i)) and a 16% increase in phrenic expiratory period (T(e)) but had no net effect on the phrenic interburst interval (T(tot)). Catestatin decreased sympathetic barosensitivity by 63.6% and attenuated the peripheral chemoreflex (sympathetic nerve response to brief hypoxia; range decreased 39.9%; slope decreased 30.1%). The results suggest that catestatin plays an important role in central cardiorespiratory control.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00409.2011DOI Listing

Publication Analysis

Top Keywords

sympathetic nerve
12
nerve activity
12
catestatin
10
sympathetic barosensitivity
8
ventrolateral medulla
8
microinjection catestatin
8
arterial pressure
8
phrenic nerve
8
heart rate
8
homeostatic reflexes
8

Similar Publications

Application of stereotactic radiotherapy in the treatment of cardiovascular diseases through sympathectomy.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Sympathectomy, as an emerging treatment method for cardiovascular diseases, has received extensive attention in recent years. Stereotactic radiotherapy (SRT), a precise and noninvasive therapeutic technique, has gradually been introduced into interventions targeting the sympathetic nervous system and has shown promising prospects in the management of cardiovascular conditions. Using three-dimensional imaging, SRT can accurately localize sympathetic ganglia and deliver high-energy radiation to disrupt nerve fibers, thereby achieving effects similar to conventional sympathectomy while reducing surgery-related complications and shortening recovery time.

View Article and Find Full Text PDF

Objectives: To clarify the role of hippocampal glutamate system in regulating HPA axis in mediating the effect of electroacupuncture (EA) at the heart meridian for improving myocardial injury in rats with acute myocardial ischemia (AMI).

Methods: Male SD rats were randomized into sham-operated group, AMI group, EA group, and L-glutamic acid+EA group (=9). Rat models of AMI were established by left descending coronary artery ligation, and EA was applied at the "Shenmen-Tongli" segment; the rats in L-glutamic acid+EA group were subjected to microinjection of L-glutamic acid into the bilateral hippocampus prior to AMI modeling and EA treatment.

View Article and Find Full Text PDF

The airway-brain axis: Connecting breath, brain, and behavior.

Cell Rep

September 2025

Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Biology of Adversity Project, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Elect

The neural control of breathing is both dynamic and essential, ensuring life-sustaining gas exchange while protecting the respiratory system from harm. Peripheral neurons innervating the respiratory tract exhibit remarkable diversity, continuously relaying sensory feedback to the brain to regulate breathing, trigger protective reflexes such as coughing and sickness behaviors, and even influence emotional states. Understanding this airway-brain axis is especially critical given the increasing global burden of respiratory diseases, as it holds implications for both human health and broader brain-body interactions.

View Article and Find Full Text PDF

Social isolation promotes hyperglycemia through sympathetic activation of inguinal white adipose tissue.

Biochem Biophys Res Commun

September 2025

Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China. Electronic address:

Epidemiological studies have reported that social isolation increases the risk of diabetes, but the underlying neural mechanism remains unclear. Using a long-term single-housed (SH) mouse model of social isolation, SH mice not only exhibited disrupted glucose homeostasis, evidenced by elevated fasting glucose, impaired glucose tolerance, and reduced insulin sensitivity, but also showed hypertrophic adipocytes and altered lipid metabolism. To elucidate the neural mechanisms underlying these metabolic disturbances, retrograde trans-synaptic tracing revealed the paraventricular nucleus (PVN) and locus coeruleus (LC) as the most PRV-labeled brain regions, suggesting their potential roles in social isolation-induced hyperglycemia.

View Article and Find Full Text PDF

Electroacupuncture alleviates intestinal ischemia-reperfusion-induced acute lung injury via the vagus-sympathetic nerve pathway.

Int Immunopharmacol

September 2025

Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China; Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:

Aims: Intestinal ischemia-reperfusion (II/R) injury predominantly causes acute lung injury (ALI), and in severe instances, acute respiratory distress syndrome, both associated with high mortality. Electroacupuncture (EA) excels in regulating autonomic nervous system balance and safeguarding organ function. This study delved into EA's impacts and mechanisms on II/R-induced ALI.

View Article and Find Full Text PDF